资源预览内容
第1页 / 共93页
第2页 / 共93页
第3页 / 共93页
第4页 / 共93页
第5页 / 共93页
第6页 / 共93页
第7页 / 共93页
第8页 / 共93页
第9页 / 共93页
第10页 / 共93页
亲,该文档总共93页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2004年12月,制作 曾令琴,主编 曾令琴,门电路 逻辑代数 组合逻辑电路分析及其应用,组合逻辑电路,主要授课内容,第二篇,第9章 组合逻辑电路,9.1 门电路,9.2 组合逻辑电路分析基础,9.3 编码器,9.4 译码显示电路,9.5 数值比较器和数据选择器,第二篇,9.1 门电路,9.1.1 模拟电路与数字电路的区别,9.1.2 基本门电路,9.1.3 复合门电路,9.1.4 集成门电路,问题与讨论,第2页,9.1 门电路,10.1.1 模拟电路与数字电路的区别,模拟信号:在时间上和数值上连续的信号。,数字信号:在时间上和数值上不连续的(即离散的)信号。,u,u,模拟信号波形,数字信号波形,t,t,对模拟信号进行传输、处理的电子线路称为模拟电路。,对数字信号进行传输、处理的电子线路称为数字电路。,第2页,(1)工作信号是二进制的数字信号,在时间上和数值上是离散的(不连续),反映在电路上就是低电平和高电平两种状态(即0和1两个逻辑值)。 (2)在数字电路中,研究的主要问题是电路的逻辑功能,即输入信号的状态和输出信号的状态之间的逻辑关系。 (3)对组成数字电路的元器件的精度要求不高,只要在工作时能够可靠地区分0和1两种状态即可。,数字电路的特点,第2页,(1)便于集成与系列化生产,成本低廉,使用方便; (2)工作准确可靠,精度高,搞干扰能力强。 (3)不仅能完成数值计算,还能完成逻辑运算和 判断,运算速度快,保密性强。 (4)维修方便,故障的识别和判断较为容易。,2. 数字电路的优点,数字电路的优越性能使其得到广泛的应用和迅猛的发展。数字电路不仅在计算机、通信技术中应用广泛,而且在医疗、检测、控制、自动化生产线以及人们的日常生活中,也都产生了越来越深刻的影响。,第2页,获得高、低电平的基本方法:利用半导体开关元件(二极管、三极管)的导通、截止(即开、关)两种工作状态来实现。,逻辑0和逻辑1: 电子电路中通常把高电平表示为逻辑1;把低电平表示为逻辑0。(正逻辑),逻辑门电路:用以实现基本和常用逻辑运算的电子电路。简称门电路。,基本和常用门电路有与门、或门、非门(反相器)、与非门、或非门、与或非门和异或门等。,9.1.2 基本门电路,第2页,1. “与”门电路,当决定某事件的全部条件同时具备时,结果才会发生,这种因果关系叫做“与”逻辑,也称为逻辑乘。,(1) “与”逻辑关系,F=AB,与逻辑功能:有0出0,全1出1。,第2页,“与” 门真值表,“与”门电路图符号,一个“与”门的输入端至少为两个,输出端只有一个。,(2)实现与逻辑关系的电路称为与门。,第2页,“与”逻辑(逻辑乘)的运算规则,与门的输入端可以有多个。下图为一个三输入与门电路的输入信号A、B、C和输出信号F的波形图。,有0出0,有0出0,全1出1,第2页,2. “或”门电路,当某事件发生的全部条件中至少有一个条件满足时,事件必然发生,当全部条件都不满足时,事件决不会发生,这种因果关系叫做“或”逻辑,也称为逻辑加。,(1) “或”逻辑关系,F=A+B,或逻辑功能:有1出1,全0出0。,第2页,(2)实现或逻辑关系的电路称为或门。,“或” 门真值表,“或”门电路图符号,一个“或”门的输入端也是至少两个,输出端只有一个。,第2页,“或”逻辑(逻辑加)的运算规则,或门的输入端也可以有多个。下图为一个三输入或门电路的输入信号A、B、C和输出信号F的波形图。,全0出0,全0出0,有1出1,第2页,3. “非”门电路,当某事件相关的条件不满足时,事件必然发生;当条件满足时,事件决不会发生,这种因果关系叫做“非”逻辑。,(1) “非”逻辑关系,非逻辑功能:给1出0,给0出1。,输入A为高电平1(3V)时,三极管饱和导通,输出F为低电平0(0V);输入A为低电平0(0V)时,三极管截止,输出F为高电平1(3V)。,第2页,逻辑非(逻辑反)的运算规则,“非” 门真值表,一个“非”门的输入端只有1个,输出端只有一个。,第2页,9.1.3 复合门电路,将与门、或门、非门组合起来,可以构成多种复合门电路。,由与门和非门构成与非门,1. 与非门,与非门的逻辑功能:有0出1;全1出0。,与非门真值表,第2页,内含4个两输入端的与非门, 电源线及地线公用。,内含两个4输入端的与非门, 电源线及地线公用。,第2页,由或门和非门构成或非门,或非门的逻辑功能:全0出1;有1出0。,或非门真值表,2. 或非门,第2页,3. 与或非门,第2页,异或门和同或门的逻辑图符号,异或门功能:相异出1;相同出0。,异或门真值表,4. 异或门,同或门真值表,同或门功能:相同出1;相异出0。,5. 同或门,第2页,9.1.4 集成门电路,1. TTL集成电路,输出级中T3、T4复合管电路构成达林顿电路,与电阻R5作为T5的负载,不仅可降低电路的输出电阻,提高其负载能力,还可改善门电路输出波形,提高工作速度。,输入级,输入级等效电路,显然F1=ABC 相当与门。,中间级,中间级也称倒相级,即在T2的集电级和发射级同时输出两个相位相反的信号。,推拉式输出级,第2页,TTL与非门的工作原理,输入信号中至少有一个为低电平(0.3V)时,低电平所对应的PN结导通,T1的基极电位被固定在1V(0.3+0.7)。,1V, 输入端只要有一个为低电平,T1基极电位就会固定在1V ,导致T1,深度饱和,F1电位为低电平0.3V。T2、T5 截止;,0.3V,截止,截止,饱和,饱和,有0出1;,T3、T4饱和导通(通过Ucc,R2);,TTL与非门的输出电位为:,第2页,输入信号全部为高电平(3.6V)时,电源UCC经R1、T1集电结向T2、T5基极提供电流,T2、T5发射结导通后,T1基极电位被钳位在2.1V。0.7+0.7+0.7=2.1V,2.1V, 输入端全部为高电平时,T1基极电位就会钳位在2.1V ,使T1输出电,位F1为1.4V,T1处于倒置工作状态(即发射结反偏,集电结正偏)。,0.7V,截止,微导通,0.7V,0.7V,全1出0。,T1在此状态下值较小,因此T2、T5饱和,T3微导通,T4截止;,TTL与非门的输出电位等于T5的饱和电位值:,0V,1.4V,饱和,饱和,第2页,功能真值表,逻辑表达式,输入有0,输出为1;输入全1,输出为0。,与非门图符号,第2页,(2)集电极开路的TTL与非门(OC门),实际使用中,若将两个或多个逻辑门的输出端直 接与总线相连,就会得到附加的“线与”逻辑功能。,上面讲到的普通TTL与非门,由于采用了推拉式输出电路,因此其输出电阻很低,使用时输出端不能长久接地或与电源短接。因此不能直接让输出端与总线相连,即不允许直接进行上述“线与”。,多个普通TTL与非门电路的输出端也不能连接在一起后上总线。因为,当它们的输出端连接在一起上到总线上,只要有一个与非门的输出为高电平时,这个高电平输出端就会直接与其它低电平输出端连通而形成通路,总线上就会有一个很大的电流Ic由高电平输出端经总线流向低电平输出端的门电路,该门电路将因功耗过大而极易烧毁。,第2页,解决的办法:集电极开路,如左下图所示,称为集电极开路的 与非门,简称OC门。,OC门在结构上将一般TTL门输出级的有源负载部分(如普通TTL与非门中的T3、T4、R4)去除,输出级晶体管T5的集电极在集成电路内部不连接任何元件,直接作为输出端(集电极开路)。,OC门在使用时,应根据负载的大小和要求,合理选择外接电阻RC的数值,并将RC和电源UCC连接在OC门的输出端。,另外 OC门还可以实现总线传输。,RC,OC门不但可以实现“线与”逻辑;还可以作为接口电路实现逻辑电平的转换;,第2页,(3)三态门,三态门具有三种输出状态:高电平、低电平和高阻状态。,电路分析:, 当EN= 0时(有效状态),T1饱和,T2、T4截止,同时D1导通使T3、T5也截止。这时从外往输入端看进去,电路呈现高阻态;,因为三态门在EN=1时为普通与非门,有高、低电平两种状态,在EN=0时为高阻态,共有三种状态,因此称为三态门。,三态门的逻辑符号如下:,第2页,三态门真值表,三态门主要用于总线结构,实现用一根导线轮流传送多路数据。通常把用于传输多个门输出信号的导线叫做总线(母线)。如下图所示。只要控制端轮流地出现高电平(每一时刻只允许一个门正常工作),总线上就轮流送出各个与非门的输出信号,由此可省去大量的机内连线。,第2页,(1)CMOS反相器,1. CMOS门电路,工作管T1为N沟道增强型MOS管,负载管T2为P沟道增强型MOS管,两管的漏极接在一起作为电路的输出端,两管的栅极接在一起作为电路的输入端,T1、T2源极与其衬底相连,一个接地,一个接电源,如果要使电路中的绝缘栅型场效应管形成导电沟道,T1的栅源电压必须大于开启电压的值,T2的栅源电压必须低于开启电压的值,所以,为使电路正常工作,电源电压UDD必须大于两管开启电压的绝对值之和。,工作原理:,(1)ui0V时,T1截止,T2导通。输出 电压u0UDD; (2)uiUDD时,T1导通,T2截止。输出 电压u00V。,第2页,(2)CMOS传输门和模拟开关,工作原理:,设高电平为10V,低电平为0V,电源电压为10V。开启电压为3V。 在CP“1”,若输入电压为0V7V,则TN的栅源电压不低于3V,因此TN管导通;若输入电压为3V10V,同理,TP管导通,即在输入电压为0V10V的范围内,至少有一个管子是导通的。输入电压可以传送到输出端。此时传输门相当于接通的开关。,当CP“0”, 无论输入电压在0 V10V之间如何变化,栅极和源极之间的电压无法满足管子导通沟道产生的条件,所以两个管子都截止,输入电压无法传送到输出端。此时传输门相当于断开的开关。,当传输门的控制信号由一个非门的输入和输出来提供时,就构成一个模拟开关,其电路和原理不再叙述。,第2页,F=ABC是三输入的与门;G是非门。,TTL门的逻辑高电平约为3.6V;低电平约为0.3V。CMOS门的逻辑高电平约为510V,低电平约为00.4V.使用时特别要注意CMOS门芯片不用的输入端不能悬空!其他注意事项可参看课本。,普通与非门只有高电平和低电平两种状态,三态门除了这两种状态还有高阻态。三态门主要应用于总线传送,它可进行单向数据传送,也可以进行双向数据传送。,第2页,9.2 组合逻辑电路分析基础,9.2.1 计数制与代码,9.2.2 逻辑函数的化简,9.2.3 组合逻辑电路,第2页,9.2.1 计数制与代码,1.计数制,计数制是用表示计数值符号的个数(称为基数)来命名的。日常生活中,人们常用的计数制是十进制,而在数字电路中通常采用的是二进制,有时也采用八进制和十六进制。,(1)基 数:指在该进位制中可能用到的数码的个数。如二进制有0 和1两个数码,因此基数是2;十进制有09十个数码, 基数是10。,(2) 位 权:任意一种进位制的数中,每一位的数码代表的权不同, 例如十进制数535=5102+3101+5100,显然百位的 5代表500,个位的5代表5个;其中位权是10的幂。,两个概念,第2页,(1)十进制,特点,十进制计数各位的基数是10;,十进制数的每一位必定是09十个数码中的一个;,十进制数低位和相邻高位之间的进位关系是“逢10进1”;,同一个数字符号在不同的数位代表的权不同,权是10的幂。,(2)二进制,特点,二进制计数各位的基数是2;,二进制数的每一位必定是1和0两个二进制数码中的一个;,二进制数低位和相邻高位之间的进位关系是“逢2进1”;,同一个数字符号在不同的数位代表的权不同,权是2的幂。,第2页,(3)八进制和十六进制,八进制特点,八进制计数各位的基数是8;,八进制数的每一位必定是07中八个数码中的一个;,八进制数低位和相邻高位之间的进位关系是“逢8进1”;,同一个数字符号在
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号