资源预览内容
第1页 / 共6页
第2页 / 共6页
第3页 / 共6页
第4页 / 共6页
第5页 / 共6页
第6页 / 共6页
亲,该文档总共6页全部预览完了,如果喜欢就下载吧!
资源描述
7.1 平面直角坐标系一、教学目标1理解有序数对的意义。2能用有序数对表示实际生活中物体的位置。二、教学重难点学习重点:理解有序数对的意义学习难点:能用有序数对表示实际生活中物体的位置三、教学过程 (一)复习引入1一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。2地质部门在某地埋下一个标志桩,上面写着“北纬44.2,东经125.7”。3某人买了一张8排6号的电影票,很快找到了自己的座位。数对1,33,14,64,62,55,23,66,3分析以上情景,他们分别利用那些数据找到位置的。你能举出生活中利用数据表示位置的例子吗?4 5 (二)探索新知(一)预习自我检测(阅读课本,把不懂的问题记录下来,课堂上我们共同讨论!)1有序数对: 记作:( , )6大道5大道A4大道3大道B2大道1大道1街2街3街4街5街6街 2如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)(5,5)(5,4)(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?解:其他的路径可以是:1、2、3、4、5、 (三)巩固练习问题1:这位同学在“第一排”,你能找到吗?这位同学在“第三列”,你能找到吗?若说这位同学在“第一排、第三列”能找到吗?你认为确定一个位置需要_个数据。问题二:请找到如右表用数对表示的位置思考:它们表示的是同一位置吗 在平面内确定一个位置需_个数据,而且还与它们的_有关。我们把_叫有序数对,记作(_, _)。新知运用: 如图,如果用(1,3)表示第1列第3排, 请用彩笔把以下位置涂上颜色。(1,6), (2,6), (3,5), (4,4), (5,2),(6,2),(7,4) (四)应用拓展1.在电影院内,确定一个座位一般需要 个数据,其理由是 ;A2.七年级班座位有七排8列,张艳的座位在2排4列,简记为(2,4),班级座次表上写着王刚(5,8),那么王刚的座位在 ;3.如图2,若用(0,0)表示点A的位置,试在方格纸中标出B(2,4)C(3,0),D(5,4),E(6,0),并顺次连接起来,是英文字母中的 。4. 如图,马所处的位置为(2,3). (1)你能表示出象的位置吗?(2)写出马的下一步可以到达的位置。(五)归纳小结这节课我的最大收获是:(六)布置作业四、教学反馈(下课后填完,并交给科代表)你对本节课的学习感受如何?请在合适的空格里打,并说说你的困惑。听懂,并会解题听懂,不怎么会解题有点懂听不懂说出你的困惑:五、教学反思:一、教学目标1认识平面直角坐标系,了解平面直角坐标系的概念并会画平面直角坐标系.2. 了解点的坐标的意义,会用坐标表示点,能画出点的坐标位置。3. 在平面直角坐标系中能由点的位置确定点的坐标或由点的坐标确定点的位置。二、教学重难点教学重点:了解点的坐标的意义,会用坐标表示点,能画出点的坐标位置教学难点:在平面直角坐标系中能由点的位置确定点的坐标或由点的坐标确定点的位置。三、教学过程 (一)复习引入1数轴的三要素是_、_、_。 2如图,说明数轴上点A和点B的位置,3根据下图,你能正确说出各个象棋子的位置吗?(二)探索新知自我检测(阅读课本第4042思考并完成以下问题)1数轴上的点可以用 个数来表示,这个数叫做这个点的坐标。反过来,知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了。2思考:类似于利用数轴确定直线上点的位置,能不能找到一种办法来确定平面内的点的位置呢? 3新知学习:如何用一对实数来表示平面内的位置呢?早在1637年以前,法国数学家笛卡儿受到了经、纬线的启发,地理上的经纬度是以赤道和本初子午线为标准的,这两条线从局部上看是平面内互相垂直的两条直线。所以笛卡儿在平面内画两条 的数轴,其中水平的数轴叫 (或 )取向右为正方向,铅直的数轴叫 (或 ),取向 为正方向,X轴或Y轴统称为 ,它们的交点是 ,这个平面叫做坐标平面。这就是今天要研究的笛卡儿的平面直角坐标系。(三)合作探究 点的坐标重点:x轴或横轴,y轴或纵轴,原点,单位长度,两条数轴互相垂直,箭头。1如何在平面直角坐标系中表示一个点?A(3,4)的表示方法:A点在x轴上的坐标为 ,A点在y轴上的坐标为 ,A点在平面直坐标系中的坐标为 ,记作:A (_,_) 图1 图2请你写出图1中点B,C,D的坐标:B(_,_),C(_,_),D(_,_).归纳:1.我们用_表示平面上的点,这对数叫_。表示方法为(a,b).a是点对应_上的数值,b是点在_上对应的数值。注意: 轴上的坐标写在前面。2.思考:原点O的坐标是( _ ,_ ),x轴上的纵坐标都是 , y轴上的横坐标都是 。3.新知运用:在平面直角坐标系(图2)中描出下列各点:A(4,5), B(-2,3), C(-4,-1), D(2.5,-2), E(0,-4),(四)应用拓展(五)归纳小结 本节课要掌握:(六)布置作业 完成课后习题四、教学反馈(下课后填完,并交给科代表)你对本节课的学习感受如何?请在合适的空格里打,并说说你的困惑。听懂,并会解题听懂,不怎么会解题有点懂听不懂说出你的困惑:5、 教学反思:一、教学目标1认识平面直角坐标系,了解平面直角坐标系中象限的的概念.2 知道每个象限及坐标轴上点的坐标特征。3 在平面直角坐标系中能熟练地由点的位置确定点的坐标或由点的坐标确定点的位置。二、教学重难点教学重点:知道每个象限及坐标轴上点的坐标特征。教学难点:在平面直角坐标系中能熟练地由点的位置确定点的坐标或由点的坐标确定点的位置三、教学过程 (一)复习引入1在平面内画两条_的数轴,组成平面直角坐标系。水平的数轴称为_或_;竖直的数轴称为_或_;两坐标轴的交点为平面直角坐标系的_。2写出图1中各点的坐标。 图1 图2(二)课堂训练1.在平面直角坐标系中,坐标平面被_分成_部分,分别叫做_、_、_、_。坐标轴上的点_。请在图2中标出每个象限2.完成下表点的位置横坐标符号横坐标符号在第一象限+在第二象限在第三象限在第四象限在x轴正半轴负半轴在y轴正半轴负半轴原点(三)探索新知1.请说出下列各点所在的位置A(2,-7), B(32,4) C(-2,-7), D(-142,63), E(2,0), F(0,-7), G(0,0)2. 点P(4,7)到x轴的距离为 ,到y轴的距离为 。3. 已知A(a1,3)在y轴上,则a = .4. 平面直角坐标系内,已知点P(a ,b)且ab0,则点P在第 象限。 (四)应用拓展1点(-3,2)在第_象限;点(2,-3)在第_象限2点(p,q)既在x轴上,又在y轴上,则p=_;q=_3点M(a,0)在轴上;点N(0,b)在轴上.4坐标平面内下列各点中,在轴上的点是 ( )A、(0,3) B、 C、 D、5在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为( ) A(-2,-5) B(-2,5) C(2,-5) D(2,5)6坐标平面内下列各点中,在轴上的点是 ( )A(0,3) B C D7已知x轴上的点P到y轴的距离为3,则点P的坐标为( )A(3,0) B(0,3) C(0,3)或(0,-3) D(3,0)或(-3,0)8在平面直角坐标系中,点(-1,m2+1)一定在( )A第一象限 B第二象限 C第三象限 D第四象限(五)归纳小结 本节课要掌握: (六)布置作业 四、教学反馈(下课后填完,并交给科代表)你对本节课的学习感受如何?请在合适的空格里打,并说说你的困惑。听懂,并会解题听懂,不怎么会解题有点懂听不懂说出你的困惑:5、 教学反思:
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号