资源预览内容
第1页 / 共3页
第2页 / 共3页
第3页 / 共3页
亲,该文档总共3页全部预览完了,如果喜欢就下载吧!
资源描述
教学时间:课题:第六课时 平行四边形的判定(特征事物) 教学目标:知识与技能:掌握用一组对边平行且相等来判定平行四边形的方法;能较熟练地应用平行四边形的性质、判定方法进行有关的证明和计算。过程与方法:经历探索、猜想、证明的过程,进一步发展推理论证的能力;通过平行四边形的性质与判定的应用,启迪思维,提高分析问题的能力理解在证明过程中所运用的归纳、类比、转化等思想方法情感态度价值观:养成认真勤奋、独立思考的好习惯,在解题过程中,体验获得成功的喜悦。教学重点:平行四边形判定方法及其应用教学难点:平行四边形的判定定理应用教学方法:讲练结合法课型:新授课教具:多媒体、三角板教学过程1.复习引入平行四边形性质与性质相关的判定平行四边形两组对边分别平行平行四边形两组对边分别相等平行四边形两组对角分别相等平行四边形对角线互相平分2.操作:用两根长度相同的铅笔,如图平行放置,若连接AD、BC,得到的四边形ABCD是平行四边形吗?你有几种证明方法?平行四边形判定定理:_3.两条平行线间的距离:两条平行线中, 到 叫做两条平行线间的距离。思考:1.两条平行线间的距离与点与点之间的距离、点到直线的距离有何联系与区别?2.如何理解几何中“距离”的概念?结论:两条平行线间的距离_;夹在两条平行线间的平行线段 。4.例题分析已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF练习1、 已知:如图,ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F求证:四边形BEDF是平行四边形 练习2、在ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连结BF。(1) 求证:BD=CD;(2) 如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。小结: 作业:课后反思:
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号