资源预览内容
第1页 / 共39页
第2页 / 共39页
第3页 / 共39页
第4页 / 共39页
第5页 / 共39页
第6页 / 共39页
第7页 / 共39页
第8页 / 共39页
第9页 / 共39页
第10页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
1.2 集合之间的关系与运算,1.2.1 集合之间的关系,1.理解集合之间包含与相等的含义,能识别一些给定集合的子集. 2.能使用维恩(Venn)图表达集合之间的关系,尤其要注意空集这一特殊集合的意义. 3.理解集合关系与其特征性质之间的关系,并能写出有限集的子集、真子集与非空真子集.,1,2,3,1.集合之间的关系,1,2,3,1,2,3,1,2,3,名师点拨1.在子集的定义中,不能认为当集合A中的元素比B中的元素个数少时,A就是B的子集.只有当A中的任何一个元素都是B中的元素时,才能说A是B的子集,不能仅仅依据元素个数的多少判定两集合的关系. 2.当A是B的子集,即AB时,不能认为A是由B中的部分元素构成的集合.因为当A=时,有AB,但集合A中不含任何元素;又当A=B时,也有AB,但此时集合A中含有B中的全部元素. 3.当集合A中存在不是集合B中的元素时,我们就说A不是B的子集,记作AB(或BA),读作:“A不包含于B”(或“B不包含A”). 4.AB包括AB和A=B两种情况.其中AB,可形象地理解为B中元素至少比A中元素多一个;而A=B,可从A的元素与B的元素完全相同去理解.,1,2,3,【做一做1-1】 有下列关系: 10,1,2;10,1,2;0,1,20,1,2;0,1,2=2,0,1.其中错误的个数是( ) A.1 B.2 C.3 D.4 解析:正确;错误,应为10,1,2; 正确,也可以写成0,1,2=0,1,2; 正确.故选A. 答案:A 【做一做1-2】 已知集合A=1,2,3,B=3,x2,2,若A=B,则x的值是( ) A.1 B.-1 C.1 D.0 答案:C,1,2,3,【做一做1-3】 指出下列各对集合之间的关系: (1)A=-1,2,B=1,-2; (2)A=1,2,3,B=0,1,2,3; (3)A=x|x2=1,B=x|x|=1; (4)A=四边形,B=矩形. 解:(1)AB,BA; (2)AB; (3)因为A=1,-1,B=1,-1,所以A=B; (4)四边形不一定是矩形,但矩形一定是四边形.因此BA.,1,2,3,2.维恩(Venn)图 我们常用平面内一条封闭曲线的内部来表示一个集合,用这种图形可以形象地表示出集合之间的关系,这种图形通常叫做维恩(Venn)图. 如果集合A是集合B的真子集,那么就把表示A的区域画在表示B的区域的内部(如图所示). 名师点拨1.Venn图一定是封闭曲线,常画成椭圆、圆或矩形; 2.Venn图中要把集合的元素写在封闭曲线的内部.,1,2,3,【做一做2】 如图所示,对于集合A,B,C,D的关系,描述正确的是( ) A.BC B.DA C.AB D.AC 答案:D,1,2,3,3.集合关系与其特征性质之间的关系 设A=x|p(x),B=x|q(x),则有,1,2,3,【做一做3-1】 已知集合M=x|0x2,N=x|-1x6,则M与N的关系是 . 解析:由于0x2-1x6,但-1x6 0x2,故MN. 答案:MN 【做一做3-2】 若集合A=x|x=2n,nZ,B=x|x=4n,nN,则A与B的关系是 . 解析:集合A是由2的倍数构成的集合,集合B是由4的倍数构成的集合,4的倍数一定是2的倍数,但2的倍数不一定是4的倍数,故BA. 答案:BA,一、“”与“”的区别与联系 剖析:符号“”表示元素与集合之间的从属关系,也就是个体与总体的关系,是指单个对象与对象的全体的从属关系;而符号“”表示集合与集合之间的包含关系. 从属关系()一般只能用在元素与集合之间;包含关系(,)只能用在集合与集合之间.在使用以上符号的时候先要弄清楚是元素与集合的关系还是集合与集合之间的关系. 例如,表示元素与集合之间的关系有:1N,-1N,11,00等,但不能写成0=0或00;表示集合与集合之间的关系有:NR,1,2,31,2,3,1,2,31,2,3,4等;但需要注意的是与的写法都是正确的,前者是从两个集合间的关系来考虑的,后者则把看成集合中的元素来考虑.,二、探索集合的子集个数问题 剖析:由子集的定义可知:若集合A是集合B的子集,则有AB,它包含以下两个方面:(1)AB;(2)A=B. 由以上知识,可以得到: 若B=a,则其子集可以是,a,即集合中若有1个元素,则其子集个数为2; 若B=a,b,则其子集可以是,a,b,a,b,即集合中若有2个元素,则其子集个数为4; 若B=a,b,c,则其子集可以是,a,b,c,a,b,a,c,b,c,a,b,c,即集合中若有3个元素,则其子集的个数为8;,若B=a,b,c,d,则其子集可以是,a,b,c,d,a,b,a,c,a,d,b,c,b,d,c,d,a,b,c,a,b,d,a,c,d,b,c,d,a,b,c,d,即集合中若有4个元素,则其子集的个数为16. 综上所述,集合中的元素个数每增加1,其子集的个数变为原来的2倍,其对应关系为: 元素个数 子集数目 1 2=21 2 221=22 3 222=23 4 223=24 由此可以猜测:若集合中有n个元素,则其子集的个数应为2n,其非空子集的个数为(2n-1),其真子集的个数应为(2n-1),其非空真子集的个数为(2n-2).,三、教材中的“思考与讨论” 已知集合A的特征性质为p(x),集合B的特征性质为q(x).“如果p(x),那么q(x)”是正确的命题,试问集合A和B的关系如何?并举例说明. 剖析:设A=x|p(x),B=x|q(x),若“如果p(x),那么q(x)”是正确的命题,则p(x)q(x),即xAxB,根据子集的定义有AB.举例说明如下:A=x|x是6的约数,B=x|x是12的约数,即集合A的特征性质p(x)是:x是6的约数;集合B的特征性质q(x)是:x是12的约数.而6的约数是1,2,3,6;12的约数是1,2,3,4,6,12.由此可知,若“如果p(x),那么q(x)”是真命题,则“如果x是6的约数,那么x是12的约数”,即xAxB,故AB.,题型一,题型二,题型三,题型四,题型五,【例1】 判断以下给出的各对集合之间的关系: (1)A=1,3,5,6,7,B=5,7; (2)A=2,3,B=x|x2-5x+6=0; (3)A=x|x2-x=0,B=x|x2-x+1=0; (4)A=x|0x1,B=x|0x3; (5)A=x|x=2k,kZ,B=x|x=2k+2,kZ. 分析:对于(1)(2),可直接根据两集合的元素进行判断;对于(5),可分析集合中元素的特征性质判断两集合的关系;对于(3),要注意空集的特殊性;对于(4),可借助数轴进行判断.,题型一,题型二,题型三,题型四,题型五,解:(1)由于A=1,3,5,6,7,B=5,7,由真子集的定义知,集合B是集合A的真子集,即BA. (2)由于B=x|x2-5x+6=0=2,3,而A=2,3,故集合A与集合B相等,即A=B. (3)由于A=x|x2-x=0=0,1,而集合B中的方程x2-x+1=0没有实数解,即B=,故BA. (4)由数轴(如图所示)可知AB. (5)当kZ时,2k是偶数,且能取到所有的偶数;当kZ时,2k+2也是偶数,也能取到所有的偶数,因此集合A和集合B都表示所有偶数的集合,即A=B.,题型一,题型二,题型三,题型四,题型五,反思1.集合间的关系有包含、真包含、相等等. 2.判断两个集合之间的关系的方法主要有: (1)对于有限集合,特别是元素个数较少时,可将元素一一列举出来进行判断; (2)对于无限集合,特别是用描述法表示的集合,应从特征性质入手进行分析判断,看其元素之间具备什么关系,从而得到集合间的关系; (3)当集合是不等式的解集时,可借助数轴分析判断集合间的关系. 3.在判断集合间的关系时,要注意空集表现形式的多样性及其特殊性,即空集是任何集合的子集,是任何非空集合的真子集.,题型一,题型二,题型三,题型四,题型五,【变式训练1】 判断下列各对集合之间的关系: (1)M=x|x0,N=x|x0,xR. 解:(1)结合数轴分析,可得MN,NM; (2)等腰直角三角形一定是直角三角形,但直角三角形不一定是等腰直角三角形,故MN; (3)集合M和N中的元素都是a2+1的形式,但在集合M中,aZ;在集合N中,aR.因为ZR,所以MN; (4)显然集合M是空集,而N是非空集合,故MN.,题型一,题型二,题型三,题型四,题型五,【例2】 已知M=2,a,b,N=2a,2,b2,且M=N,求a,b的值. 分析:M=N列方程组解方程组求a,b的值,题型一,题型二,题型三,题型四,题型五,反思在考虑两个集合相等时,应注意到集合中元素的互异性.本 题结果易出现含有 这种错误的情况,导致该错误的原因是忽视了集合中元素的互异性.,题型一,题型二,题型三,题型四,题型五,【变式训练2】 设集合A=3,x2-6,B=x,y,且A=B,求x,y的值. 解:因为A=B,所以x=3或y=3. 当x=3时,x2-6=3,集合A中元素3重复出现,不满足集合元素的互异性,故舍去; 当y=3时,应有x2-6=x,解得x=-2(x=3舍去),此时A=3,-2,B=-2,3,满足条件. 综上可知,x=-2,y=3.,题型一,题型二,题型三,题型四,题型五,【例3】 已知集合A=m|m使方程mx2-2x+1=0有唯一实数解,试写出集合A的所有子集,并指出哪些是A的真子集. 分析:先求出当方程mx2-2x+1=0有唯一实数解时m的值,从而确定集合A的元素,然后根据子集、真子集的定义写出子集,并判断哪些是真子集.,题型一,题型二,题型三,题型四,题型五,解:当m=0时,方程化为-2x+1=0,解得 当m0时,要使方程有唯一实数解,应满足=4-4m=0,解得m=1,所以A=0,1. 由0个元素构成的子集为:; 由1个元素构成的子集为:0,1; 由2个元素构成的子集为:0,1. 故集合A的子集共有4个:,0,1,1,2. 其中,除集合0,1外,其余的子集全是A的真子集.,反思在写出一个有限集合的子集(真子集)时,首先要确定该集合的全部元素,然后按照子集中所含元素的个数分类,分别写出符合要求的子集(真子集).在写子集时,不能忘记空集和集合本身.,题型一,题型二,题型三,题型四,题型五,【变式训练3】 满足条件a,bMa,b,1,2,3的集合M的个数是( ) A.3 B.4 C.7 D.8 解析:由题意知,集合M中必须含有元素a,b,且至少含有元素1,2,3中的一个,因此集合M的个数实质就是集合1,2,3的真子集的个数,一共有23-1=7个. 答案:C,题型一,题型二,题型三,题型四,题型五,【例4】 设集合A=-1,1,集合B=x|x2-2ax+b=0,若B,BA,求a,b的值. 分析:由B,BA,可见B是A的非空子集.而A的非空子集有-1,1,-1,1,故B要分三种情形讨论.,题型一,题型二,题型三,题型四,题型五,题型一,题型二,题型三,题型四,题型五,反思利用分类讨论的思想,考虑集合B的所有可能的情况,这是处理集合与其子
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号