资源预览内容
第1页 / 共37页
第2页 / 共37页
第3页 / 共37页
第4页 / 共37页
第5页 / 共37页
第6页 / 共37页
第7页 / 共37页
第8页 / 共37页
第9页 / 共37页
第10页 / 共37页
亲,该文档总共37页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第四章 超声波局部放电检测技术目 录第一节 超声波局部放电检测技术概述3一、发展历程3二、技术分类及特点4三、应用情况5第二节 超声波局部放电检测技术基本原理6一、超声波的基本知识6二、超声波局部放电检测基本原理8三、超声波局部放电检测装置组成及原理10(一)硬件系统11(二)软件系统13第三节 超声波局部放电检测及诊断方法15一、检测方法15(一)概述15(二)超声波局部放电带电检测方法15二、诊断方法22(一)正常判断依据22(二)有明显缺陷的判断依据23(三)疑似缺陷判断依据23(四)不同类型设备超声波局部放电的缺陷诊断24第四节 典型超声波局部放电案例分析27一、110kV GIS设备导向杆松动检测27(一)案例经过27(二)检测分析方法27(三)经验体会30二、500kV变压器内部放电缺陷检测30(一)案例经过30(二)检测分析方法31(三)经验体会33三、10kV开关柜局部放电检测33(一)案例经过33(二)检测分析方法33(三)经验体会36参考文献37第一节 超声波局部放电检测技术概述一、发展历程超声波局部放电检测技术凭借其抗干扰能力及定位能力的优势,在众多的检测法中占有非常重要的地位。超声波法用于变压器局部放电检测最早始于上世纪40年代,但因为灵敏度低,易于受到外界干扰等原因一直没有得到广泛的应用。上世纪80年代以来随着微电子技术和信号处理技术的飞速发展,由于压电换能元件效率的提高和低噪声的集成元件放大器的应用,超声波法的灵敏度和抗干扰能力得到了很大提高,其在实际中的应用才重新得到重视。挪威电科院的L.E.Lundgaard.从上世纪70年代末开始研究局部放电的超声检测法,并于1992年发表了介绍超声检测局部放电的基本理论及其在变压器、电容器、电缆、户外绝缘子、空气绝缘开关中的应用情况的文章。随后美国西屋公司的Ron Harrold对大电容的局部放电超声检测进行了研究,并初步探索了超声波检测的幅值与脉冲电流法测量视在放电量之间的关系。2000年,澳大利亚的西门子研究机构使用超声波和射频电磁波联合检测技术监测变压器中的局部放电活动。2002年,法国ALSTOM输配电局的研究人员对变压器中的典型局部放电超声波信号的传播与衰减进行了比较研究。2005年德国Ekard Grossman和Kurt Feser发表了基于优化的声发射技术的油纸绝缘设备的局部放电在线测试方法,通过使用二维傅里叶变换对信号进行处理,可达10pC的检测灵敏度。同一年,南韩电力研究所研究员发表了关于电力变压器局放超声波信号及噪声的分析方法的文章。国内清华大学、华北电力大学、西安交通大学、武汉高压所等科研机构自上世纪90年代开始逐渐开展超声波局部放电检测的研究。西安交通大学提出了相控定位方法,先通过时延算出放电的距离,再根据相控阵扫描的角度确定放电的空间位置。武高所开发了JFD系列超声定位系统,其对一般变压器放电定位误差可小于10cm。经过几十年的发展,目前超声波局部放电检测已经成为局部放电检测的主要方法之一,特别是在带电检测定位方面。该方法具有可以避免电磁干扰的影响、可以方便地定位以及应用范围广泛等优点。传统的超声波局部放电检测法是利用固定在电力设备外壁上的超声波传感器接收设备内部局部放电产生的超声波脉冲,由此来检测局部放电的大小和位置。由于此方法受电气干扰的影响比较小以及它在局部放电定位中的广泛应用,人们对超声波法的研究逐渐深入。目前,超声波检测局部放电的研究工作主要集中在定位方面,原因是与电测法相比,超声波的传播速度较慢,对检测系统的速度与精度要求较低,且其空间传播方向性强。在利用超声波进行局部放电量大小确定和模式识别方面的工作相对较少,上世纪80年代德国和日本科学家曾在此方面进行过研究,近年来有学者提出了利用频谱识别局部放电模式的新方法,其研究也取得了一些新成果,但目前仍处于实验室研究阶段,现场应用情况并不理想。此外,将超声波法与射频电磁波法(包括射频法和特高频法)联合起来进行局部放电定位的声电联合法成为一个新的发展趋势,在工程实际中得到了较为广泛的应用。二、技术分类及特点尽管脉冲电流法是局部放电研究的基础,但是电脉冲信号在现场检测时会有很大的干扰,很难正确得到放电信号,另外还存在在线结果与离线结果的等效性等问题。超声波检测法具有以下特点。1、抗电磁干扰能力强目前采用的超声波局部放电检测法是利用超声波传感器在电力设备的外壳部分进行检测。电力设备在运行过程中存在着较强的电磁干扰,而超声波检测是非电检测方法,其检测频段可以有效躲开电磁干扰,取得更好的检测效果。2、便于实现放电定位确定局部放电位置既可以为设备缺陷的诊断提供有效的数据参考,也可以减少检修时间。超声波信号在传播过程中具有很强的方向性,能量集中,因此在检测过程中易于得到定向而集中的波束,从而方便进行定位。在实际应用中,GIS设备常采用幅值定位法,它是基于超声波信号的衰减特性实现的;变压器常采用空间定位法,目前市面上已有比较成熟的定位系统。3、适应范围广泛超声波局部放电检测可以广泛应用于各类一次设备。根据超声波信号传播途径的不同,超声波局部放电检测可分为接触式检测和非接触式检测。接触式超声波检测主要用于检测如GIS、变压器等设备外壳表面的超声波信号,而非接触式超声波检测可用于检测开关柜、配电线路等设备。与此同时,超声波局部放电检测技术也存在一定的不足,如对于内部缺陷不敏感、受机械振动干扰较大、进行放电类型模式识别难度大以及检测范围小等。因此,在实际应用中,如GIS、变压器等设备的超声波局部放电检测既可以进行全站普测,也可以与特高频法、高频法等其他检测方式相配合,用于对疑似缺陷的精确定位;而开关柜类设备由于其体积较小,利用超声波可对配电所、开闭站等进行快速的巡检,具有较高的检测效率。目前,超声波局部放电检测范围涵盖变压器、GIS组合电器、开关柜、电缆终端、架空输电线路等各个电压等级的各类一次设备。其中,变压器和GIS的超声波局部放电检测通常采用接触式方法,检测时将超声波传感器(通常为压电陶瓷材料)放置在设备外壳上,接收内部发生局部放电时产生的异常信号;开关柜的超声波检测既可以采用非接触式传感器在柜体各接缝处进行检测,也可以采用接触式传感器检测由内部传播至柜体表面的超声波信号;利用无损信号传导杆可以将超声波局部放电检测法应用于检测电缆终端工艺不良等绝缘缺陷,该方法已经取得了一定的应用效果;在配网架空输电线路巡线时,可通过一个超声波传感器接收线路上的绝缘缺陷所产生的放电信号,对线路的运行状况进行分析。在实际应用中,由于超声波检测法具有出色的定位能力,其在变压器和GIS设备巡检过程中对内部缺陷点的确认和定位得到了较为广泛的应用,而开关柜的超声波检测也广泛应用于配电设备的巡检中。三、应用情况随着超声波局部放电检测技术研究的逐渐深入,其在全世界范围内得到了大量的推广。目前,GIS、变压器、开关柜等设备均有成熟的检测装置和仪器供选择,各国在超声波检测领域也已积累了大量的检测经验与发现缺陷设备的经验。2000年初,超声波局部放电检测技术开始引入国内。2006年起,通过与新加坡新能源电网公司进行同业对标,以北京、上海、天津为代表的一批国内电网公司率先引进超声波局放检测技术,开展现场检测应用,并成功发现了多起局部放电案例,为该技术的推广应用积累了宝贵经验。在过去的三年内,国内各电网公司均显著增加了各类超声波局部放电检测装置仪器的配备数量,国家电网公司仅2011年GIS、开关柜及电缆超声波局部放电检测装置配置数量上涨了近20倍,可见超声波检测法在实际应用中具有很强的实用性,得到了运行人员的充分肯定。该技术在2008年北京奥运会、2010年上海世博会等大型活动保电工作以及特高压设备缺陷检测中均发挥了重要的作用。国际电工委员会(IEC)TC42下属工作组正在致力于相关标准IEC 62478的制订工作,国内相应的标准制订也正在进行中。国家电网公司在引入、推广超声波局放检测技术方面做了大量卓有成效的工作。2010年,在充分总结部分省市电力公司试点应用经验的基础上,结合状态检修工作的深入开展,国家电网公司颁布了电力设备带电检测技术规范(试行)和电力设备带电检测仪器配置原则(试行),首次在国家电网公司范围内统一了超声波局放检测的判据、周期和仪器配置标准,超声波局放检测技术在国家电网公司范围全面推广。2013年8月至2014年2月国家电网公司组织开展了超声波局放检测装置性能检测工作,首次对国内市场上数十款超声波带电检测仪器进行了综合性能的检测工作,对规范和引导国内仪器开发和制造技术领域起到了积极推动作用。自2010年以来,国家电网公司先后举办了20余期电力设备状态检测技术及技能培训工作,共培训技术与技能人员3000余人,培训内容涉及超声波局放检测等多个项目,为该技术的推广应用打下了广泛的人员基础。第二节 超声波局部放电检测技术基本原理一、超声波的基本知识超声波是指振动频率大于20kHz的声波。因其频率超出了人耳听觉的一般上限,人们将这种听不见的声波叫做超声波。超声波与声波一样,是物体机械振动状态的传播形式。按声源在介质中振动的方向与波在介质中传播的方向之间的关系,可以将超声波分为纵波和横波两种形式。纵波又称疏密波,其质点运动方向与波的传播方向一致,能存在于固体、液体和气体介质中;横波,又称剪切波,其质点运动方向与波的传播方向垂直,仅能存在于固体介质中。1 声波的运动声音以机械波的形式在介质中传播,换句话说,也就是对介质的局部干扰的传播。对于液体而言,局部干扰造成介质的压缩和膨胀,压力的局部变化会造成介质密度的局部变化和分子的位移,此过程被称为粒子位移。在物理学中,对于声波的运动有着更为正式的描述:(4-1)这里c指声速。此描述声波运动的通用微分方程是由描述连续性、动量守恒和介质弹性的三个基本方程联立而得。2 声波的阻抗和强度声在气体中的传播速度是由状态方程决定的;对于液体,速度是由该液体的弹性决定的;对于固体,则是由胡克定律决定的。图4-1显示了作用在一小滴液体上的力。合成作用力使该颗粒以速度v移动。对于平面波,声的压强和颗粒的速度的比例被称为声阻抗:(4-2)图4-1作用于柱形声学颗粒(声线)上的力声阻抗和电阻抗类似,并且当压强和速度异相的时候也可以是复数。但是,对于平面波,声阻抗是标量(Z=p0c)并被称为介质特征阻抗。声波强度(单位时间内通过介质的声波能量,单位为W/m2)是一个非常重要的物理量。声波强度可以用峰值压强P、峰值速度V的多种表达式表示,其中包括:(4-3)在实际应用中,声波强度也常用分贝(dB)来度量。3 声波的反射、折射与衍射当声波穿透物体时,其强度会随着与声源距离的增加而衰减。导致这个现象的因素包括声波的几何空间传播过程、声波的吸收(声波机械能转为内能的过程)以及波阵面的散射。这些现象都导致了声波的强度随着与声源间距离的不断增大而不断减小。在无损的介质中,球面波强度与球面波阵面的面积成反比,圆柱波强度与相对于声源的距离成反比,这样的衰减被称为空间衰减。因为此类衰减仅与波形传播的空间几何参数有关。图4-2中描述的就是平面波、圆柱波及球型波在传播过程的几何空间衰减情况。图4-2不同波阵面类型对应的不同衰减情况当声波从一种媒介传播到另一种具有不同密度或弹性的媒介时,就会发生反射和折射现象,从而导致能量的衰减,如图4-3所示。在平面波垂直入射的情况下,描述衰减的传播系数由下式给出:(4-4)显然,当两种媒介
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号