资源预览内容
第1页 / 共24页
第2页 / 共24页
第3页 / 共24页
第4页 / 共24页
第5页 / 共24页
第6页 / 共24页
第7页 / 共24页
第8页 / 共24页
第9页 / 共24页
第10页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
11.2三角形全等的判定(一),B,C,仲恺中学 黄爱群,知识回顾,1、 什么叫全等三角形?,能够重合的两个三角形叫 全等三角形。,2、 已知ABC DEF,找出其中相等的边与角,AB=DE, CA=FD, BC=EF, A= D, B=E, C= F,AB=DE, CA=FD, BC=EF, A= D, B=E, C= F,1.满足这六个条件可以保证ABC DEF吗? 2.如果只满足这些条件中的一部分,那么能保证ABC DEF吗?,思考:,1.只给一条边时;,3,3,1.只给一个条件,45,2.只给一个角时;,45,结论:只有一条边或一个角对应相等的两个三角形不一定全等.,探究一,两边;,两角。,一边一角;,2.如果满足两个条件,你能说出有哪几种可能的情况?,如果三角形的两边分别为4cm,6cm 时,6cm,6cm,4cm,4cm,结论:两条边对应相等的两个三角形不一定全等.,三角形的一条边为4cm,一个内角为30时:,4cm,4cm,30,30,结论:一条边一个角对应相等的两个三角形不一定全等.,如果三角形的两个内角分别是30,50时,结论:两个角对应相等的两个三角形不一定全等.,根据三角形的内角和为180度,则第三角一定确定,所以当三内角对应相等时,两个三角形不一定全等,两个条件 两角; 两边; 一边一角。,结论:只给出一个或两个条件时,都不能保证所画的三角形一定全等。,一个条件 一角; 一边;,你能得到什么结论吗?,三角;,三边;,两边一角;,两角一边。,3.如果满足三个条件,你能说出有哪几种可能的情况?,探索三角形全等的条件,已知两个三角形的三个内角分别为30,60 ,90 它们一定全等吗?,这说明有三个角对应相等的两个三角形 不一定全等,三个角,已知两个三角形的三条边都分别为3cm、4cm、6cm 。它们一定全等吗?,三条边,先任意画出一个ABC,再画出一个ABC ,使 AB= AB ,BC =BC, A C =AC.把画好ABC的剪下,放到ABC上,他们全等吗?,画法: 1.画线段 BC =BC;,2.分别以 B , C为圆心,BA,BC为半径画弧,两弧交于点A;,3. 连接线段 AB , AC .,探究二,上述结论反映了什么规律?,三边对应相等的两个三角形全等。 简写为“边边边”或“SSS”,边边边公理:,注意: 这个定理说明,只要三角形的三边的长度确定了,这个三角形的形状和大小就完全确定了,这也是三角形具有稳定性的原理。,如何用符号语言来表达呢?,在ABC与DEF中,A,B,C,D,E,F,AB=DE AC=DF BC=EF,ABCDEF(SSS),判断两个三角形全等的推理过程,叫做证明三角形全等。,A,C,B,D,证明:D是BC的中点,BD=CD,在ABD与ACD中,AB=AC(已知),BD=CD(已证),AD=AD(公共边),ABDACD(SSS),例1 如图, ABC是一个钢架,AB=AC,AD是连接A与BC中点D的支架,求证: ABDACD,求证:B=C,,B=C,,归纳:,准备条件:证全等时要用的条件要先证好;,三角形全等书写三步骤:,写出在哪两个三角形中,摆出三个条件用大括号括起来,写出全等结论,证明的书写步骤:,练习: 已知:如图,AB=AD,BC=DC, 求证:ABC ADC,A,B,C,D,AC,AC ( ),AB=AD ( ) BC=DC ( ), ABC ADC(SSS),证明:在ABC和ADC中,=,已知,已知,公共边,BC,CB,DCB,BF=CD,1、填空题:,解: ABCDCB 理由如下: AB = CD AC = BD =,ABC ( ),(SSS,(1)如图,AB=CD,AC=BD,ABC和DCB是否全等?试说明理由。,=,=,=,=,或 BD=FC,图1,已知:如图1 ,AC=FE,AD=FB,BC=DE 求证:ABCFDE,证明: AD=FB AB=FD(等式性质) 在ABC和FDE 中,AC=FE(已知) BC=DE(已知) AB=FD(已证) ABCFDE(SSS),求证:C=E ,,=,=,?,?,。,。,(2) ABCFDE(已证), C=E (全等三角形的对应角相等),求证:ABEF;DEBC,已知:如图,AB=AC,DB=DC, 请说明B =C成立的理由,A,B,C,D,在ABD和ACD中,,AB=AC (已知),DB=DC (已知),AD=AD (公共边),ABDACD (SSS),解:连接AD, B =C (全等三角形的对应角相等),已知: 如图, 四边形ABCD中,AD=CB,AB=CD 求证: A C。,A,C,D,B,分析:要证两角或两线段相等,常先证这两角或两线段 所在的两三角形全等,从而需构造全等三角形。,构造公共边是常添的辅助线,1,2,3,4,已知:AC=AD,BC=BD, 求证:AB是DAC的平分线., AC=AD( ),BC=BD( ),AB=AB( ),ABCABD( ),1=2,AB是DAC的平分线,(全等三角形的对应角相等),已知,已知,公共边,SSS,(角平分线定义),证明:在ABC和ABD中,1.边边边公理:有三边对应相等的两个三角形全等,简写成“边边边”(SSS),2.边边边公理发现过程中用到的数学方法(包括画图、猜想、分析、归纳等.),3.边边边公理在应用中用到的数学方法: 证明线段(或角)相等 转 化 证明线段(或角)所在的两个三角形全等.,两个三角形全等的注意点:,1. 说明两个三角形全等所需的条件应按对应边的顺序书写. 2. 结论中所出现的边必须在所证明的两个三角形中.,小结:,3. 有时需添辅助线(如:造公共边),
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号