资源预览内容
第1页 / 共4页
第2页 / 共4页
第3页 / 共4页
第4页 / 共4页
亲,该文档总共4页全部预览完了,如果喜欢就下载吧!
资源描述
因式分解的几种方法把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下: 1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。 例1、 分解因式x3 -2x 2-xx3 -2x2 -x=x(x2 -2x-1) 2、 应用公式法 由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。 例2、分解因式a2 +4ab+4b2 解:a2 +4ab+4b2 =(a+2b)2 3、 分组分解法 要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m2 +5n-mn-5m 解:m2 +5n-mn-5m= m 2-5m -mn+5n = (m2 -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 4、 十字相乘法 对于mx2 +px+q形式的多项式,如果ab=m,cd=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c) 例4、分解因式7x2 -19x-6 分析: 1 7=7, 2(-3)=-612+7(-3)=-19 解:7x2 -19x-6=(7x+2)(x-3) 5、配方法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。 例5、分解因式x2 +6x-40 解x2 +6x-40=x2 +6x+( 9) -(9 ) -40 =(x+ 3)2 -(7 ) 2=(x+3)+7*(x+3) 7 =(x+10)(x-4) 6、拆、添项法 可以把多项式拆成若干部分,再用进行因式分解。 例6、分解因式bc(b+c)+ca(c-a)-ab(a+b) 解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 7、 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。 例7、分解因式2x4 x3 -6x2 -x+2(也叫相反式,在这里以二次项系数为中心对称项的系数是相等的,如四次项与常数项对称,系数相等,解法也是把对称项结合在一起) 解:2x 4x3 -6x2 -x+2=2(x4 +1)-x(x2 +1)-6x2 =x2 2x2 + ()2-(x+ )-6令y=x+ , x2 2x2 +( )2-(x+)-6 = x2 2(y2 -2)-y-6 = x2 (2y2 -y-10) =x 2(y+2)(2y-5) =x2 (x+ +2)(2x+ -5) = (x2 +2x+1) (2x2 -5x+2) =(x+1)2 (2x-1)(x-2) 8、 求根法 令多项式f(x)=0,求出其根为x1,x2 ,x3 ,xn ,则多项式可因式分解为f(x)=(x-x1 )(x-x 2)(x-x3 )(x-xn ) (一般情况下是试根法,并且一般试-3,-2,-1,0,1,2,3这些数是不是方程的根)例8、分解因式2x4 +7x3 -2x2 -13x+6 解:令f(x)=2x4 +7x3 -2x2 -13x+6=0 通过综合除法可知,f(x)=0根为 ,-3,-2,1 ,则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1) 9、 图象法(这种方法在以后学函数的时候会用到。现在只是作为了解内容,它和第八种方法是类似的) 令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x1 ,x2 ,x3 ,xn ,则多项式可因式分解为从而a+c=-1,ac+b+d=-5,ad+bc=-6,bd=-4所以 解得 则x4 x3 -5x2 -6x-4 =(x 2+x+1)(x2 -2x-4)f(x)= f(x)=(x-x1 )(x-x2 )(x-x3)(x-xn ) 例9、因式分解x3 +2x2 -5x-6 解:令y= x3 +2x2 -5x-6 作出其图象,可知与x轴交点为-3,-1,2 则x3 +2x 2-5x-6=(x+1)(x+3)(x-2) 10、 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 例10、分解因式a2 (b-c)+b2 (c-a)+c2 (a-b) 分析:此题可选定a为主元,将其按次数从高到低排列 解:a2 (b-c)+b2 (c-a)+c2 (a-b)=a2 (b-c)-a(b2 -c 2)+bc(b-c) =(b-c) a2 -a(b+c)+bc =(b-c)(a-b)(a-c) 11、 利用特殊值法 将2或10(或其它数)代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。例11、分解因式x 3+9x2 +23x+15 解:令x=2,则x3 +9x 2+23x+15=8+36+46+15=105 将105分解成3个质因数的积,即105=357 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值 则x3 +9x2 +23x+15=(x+1)(x+3)(x+5) 12、待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例12、分解因式x4 x3 -5x2 -6x-4 如果已知道这个多项式没有一次因式,因而只能分解为两个二次因式。 解:设x4 x3 -5x2 -6x-4=(x2 +ax+b)(x2 +cx+d) = x4 +(a+c)x3 +(ac+b+d)x2 +(ad+bc)x+bd
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号