资源预览内容
第1页 / 共8页
第2页 / 共8页
第3页 / 共8页
第4页 / 共8页
第5页 / 共8页
第6页 / 共8页
第7页 / 共8页
第8页 / 共8页
亲,该文档总共8页全部预览完了,如果喜欢就下载吧!
资源描述
28.2.2 直线与圆的位置关系白石中学28.2.2直线与圆的位置关系教学目标:1、使学生掌握直线与圆的位置关系,能用数量来判断直线与圆 的位置关系。2、让学生通过观察、看图、列表、分析、对比,能找出圆心到 直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此 外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观 点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识3、让学生感受到实际生活中,存在的直线和圆的三种位置关系, 便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际 的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。教学重点:用数量关系(圆心到直线的距离)判断直线与圆的位置关系教学难点:灵活运用直线与圆的位置关系课件准备:多媒体课件、硬币方法设计:(一)回顾点与圆的位置关系(二)情境导入:用移动的观点认识直线与圆的位置关系1、相信同学们都知道著名诗人王维的名句“大漠孤烟直,长河落日圆”吧!其中有黄河、落日。你欣赏过日出或落日的景象吧!请同学们欣赏多媒体课件上的看海上日出,如果我们把太阳看作一个圆,那么太阳在升起的过程中,它和地平线就有什么位置关系?2、请同学们在纸上画一条直线,把硬币的边缘看作圆,在纸上 移动硬币,你能发现直线与圆的公共点个数的变化情况吗?公共点 个数最少时有几个?最多时有几个?你能画出这几种情况吗?(三)新知探究1 .总结概念从以上的两个例子,可以看到,直线与圆的位置关系只有以下 三种,如下图所示:如果一条直线与一个圆没有公共点,那么就说这 条直线与这个圆相离,如图(1)所示.如果一条直线与一个圆只有 一个公共点,那么就说这条直线与这个圆 相切,如图(2)所示.此 时这条直线叫做圆的 切线,这个公共点叫做 切点.如果一条直线与一 个圆有两个公共点,那么就说这条直线与这个圆 相交,如图(3)所 示.此时这条直线叫做圆的割线.(1)2 .合作交流(1) .设圆。的半径为r,圆心O到直线l的距离为d,利用d与 之间的关系可以判断直线与圆的位置关系吗?图 28.2.6若dr 一直线l与。O相离;若d=r 一直线l与。O相切;若dr 直线l与。O相交;所以,若要判断圆与直线的位置关系,必须对圆心到直线的距离与圆的半径进行比较大小,由比较的结果得出结论(2) . 由上面的探索, 你知道可以用哪些方法来判断直线与圆的位置关系?(3) 巩固练习1、已知圆的半径等于5 厘米,圆心到直线l 的距离是: ( 1) 4厘米;( 2) 5 厘米;( 3) 6 厘米 .直线 l 和圆分别有几个公共点?分别说出直线l 与圆的位置关系。2、已知圆的半径等于10 厘米,直线和圆只有一个公共点,求圆心到直线的距离.3、如果。的直径为10厘米,圆心O到直线AB的距离为10厘 米,那么。O与直线AB有怎样的位置关系?4 .已知:圆的直径为13cmi如果圆心到直线的距离为以下值时, 直线和圆有几个公共点?为什么?(1)4.5 cm (2)6.5 cm (3)8 cm5 . 拓展延伸如图1, RtAABC中,/C=9(, AC=3 BC=4以C为圆心,r为半 径的圆与AB有怎样的位置关系?为什么? ( 1) r=2cm; (2) r=2.4cm (3) r=3cm 如图2,已知/ AOB=3度,M为OB一点,且 OM=5cm以M为圆心、r为半径的圆与直线OAW怎样的位置关系?为什么?B学生先自主完成,后小组交流,展示反馈6 .误区警示已知:圆的半径为4cm,若直线上一点与圆心距离为 6cm,那么直线与圆的位置关系是:A相离 B 相切 C 相交 D 无法确士7E7 .中考直通车如图所示,在平面直角坐标系中。o的半径为1,且直线y=x72与。o的位置关系是()课堂小结:本节课我们学习了直线与圆的位置关系,当我们判断直线与圆的位置关系时,应该用数量关系(圆心到直线的距离)来体现,即上面讲解的圆心到直线的距离与圆的半径进行比较大小, 从而断定是哪种 关系。若d r 直线l与。相离;若d=r 一直线l与。O相切;若dr 0直线l与。O相交;课后作业:习题5、6、7
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号