资源预览内容
第1页 / 共3页
第2页 / 共3页
第3页 / 共3页
亲,该文档总共3页全部预览完了,如果喜欢就下载吧!
资源描述
抛物线焦点弦性质总结30条基础回顾1. 以AB为直径的圆与准线相切;2. ;3. ;4. ;5. ;6. ;7. ;8. A、O、三点共线;9. B、O、三点共线;10. ;11. (定值);12. ;13. 垂直平分;14. 垂直平分;15. ;16. ;17. ;18. ;19. ;20. ;21. .22. 切线方程 高考资源网性质深究一)焦点弦与切线1、 过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有何特殊之处?结论1:交点在准线上先猜后证:当弦轴时,则点P的坐标为在准线上证明: 从略结论2 切线交点与弦中点连线平行于对称轴结论3 弦AB不过焦点即切线交点P不在准线上时,切线交点与弦中点的连线也平行于对称轴2、上述命题的逆命题是否成立?结论4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点先猜后证:过准线与x轴的交点作抛物线的切线,则过两切点AB的弦必过焦点结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径3、AB是抛物线(p0)焦点弦,Q是AB的中点,l是抛物线的准线,过A,B的切线相交于P,PQ与抛物线交于点M则有结论6PAPB结论7PFAB结论8 M平分PQ结论9 PA平分A1AB,PB平分B1BA结论10结论11二)非焦点弦与切线思考:当弦AB不过焦点,切线交于P点时,也有与上述结论类似结果:结论12 ,结论13 PA平分A1AB,同理PB平分B1BA结论14 结论15 点M平分PQ结论16 相关考题1、已知抛物线的焦点为F,A,B是抛物线上的两动点,且(0),过A,B两点分别作抛物线的切线,设其交点为M,(1)证明:的值;(2)设的面积为S,写出的表达式,并求S的最小值2、已知抛物线C的方程为,焦点为F,准线为l,直线m交抛物线于两点A,B;(1)过点A的抛物线C的切线与y轴交于点D,求证:;(2)若直线m过焦点F,分别过点A,B的两条切线相交于点M,求证:AMBM,且点M在直线l上3、对每个正整数n,是抛物线上的点,过焦点F的直线FAn交抛物线于另一点, (1)试证:(n1)(2)取,并Cn为抛物线上分别以An与Bn为切点的两条切线的交点,求证:(n1)3
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号