资源预览内容
第1页 / 共26页
第2页 / 共26页
第3页 / 共26页
第4页 / 共26页
第5页 / 共26页
第6页 / 共26页
第7页 / 共26页
第8页 / 共26页
第9页 / 共26页
第10页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
专题32 中考几何平移类问题1.平移的定义:平面图形的每个点沿着某一方向移动相同的距离,这样的图形运动称为平移.平移是由移动的方向和移动的距离所决定.平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。2.平移的特点:经平移运动后的图形图形的位置发生变化, 形状和大小不变.3.理解并掌握平移的三个特征:(1)对应线段平行(或在一条直线上)且相等;对应角相等.(2)对应点所连的线段平行(或在一条直线上)且相等.(3)图形在平移后形状和大小都不变.4.图形平移的画法: (1)确定点;(2)定方向;(3)定距离。【例题1】(2020广东)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A(3,2)B(2,3)C(2,3)D(3,2)【答案】D【解析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可点(3,2)关于x轴对称的点的坐标为(3,2)【对点练习】(2019湖南邵阳)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2下列说法中错误的是()Ak1=k2 Bb1b2Cb1b2 D当x=5时,y1y2【答案】B 【解析】根据两函数图象平行k相同,以及向下平移减即可判断将直线l1向下平移若干个单位后得直线l2,直线l1直线l2,k1k2,直线l1向下平移若干个单位后得直线l2,b1b2,当x5时,y1y2【点拨】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减平移后解析式有这样一个规律“左加右减,上加下减”关键是要搞清楚平移前后的解析式有什么关系【例题2】(2019桂林)如图,在平面直角坐标系中,反比例y(k0)的图象和ABC都在第一象限内,ABAC,BCx轴,且BC4,点A的坐标为(3,5)若将ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为 【答案】;【解析】ABAC,BC4,点A(3,5)B(1,),C(5,),将ABC向下平移m个单位长度,A(3,5m),C(5,m),A,C两点同时落在反比例函数图象上,3(5m)5(m),m【对点练习】(2020枣庄模拟)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)(1)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 ;(3)A2B2C2的面积是 平方单位【答案】见解析。【解析】(1)如图所示:C1(2,2);故答案为:(2,2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)A2C22=20,B2C22=20,A2B2=40,A2B2C2是等腰直角三角形,A2B2C2的面积是:20=10平方单位故答案为:10【点拨】此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键。【例题3】(2020北京)在平面直角坐标系xOy中,一次函数ykx+b(k0)的图象由函数yx的图象平移得到,且经过点(1,2)(1)求这个一次函数的解析式;(2)当x1时,对于x的每一个值,函数ymx(m0)的值大于一次函数ykx+b的值,直接写出m的取值范围【答案】见解析。【分析】(1)先根据直线平移时k的值不变得出k1,再将点A(1,2)代入yx+b,求出b的值,即可得到一次函数的解析式;(2)根据点(1,2)结合图象即可求得【解析】(1)一次函数ykx+b(k0)的图象由直线yx平移得到,k1,将点(1,2)代入yx+b,得1+b2,解得b1,一次函数的解析式为yx+1;(2)把点(1,2)代入ymx求得m2,当x1时,对于x的每一个值,函数ymx(m0)的值大于一次函数yx+1的值,m2一、选择题1(2020菏泽)在平面直角坐标系中,将点P(3,2)向右平移3个单位得到点P,则点P关于x轴的对称点的坐标为()A(0,2)B(0,2)C(6,2)D(6,2)【答案】A【解析】先根据向右平移3个单位,横坐标加3,纵坐标不变,求出点P的坐标,再根据关于x轴对称,横坐标不变,纵坐标相反解答将点P(3,2)向右平移3个单位得到点P,点P的坐标是(0,2),点P关于x轴的对称点的坐标是(0,2)2.(2019哈尔滨)将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( )A BC D【答案】B 【解析】根据“上加下减、左加右减”的原则进行解答即可将抛物线y2x2向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为y2(x2)2+3【点拨】本题考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减3(2019海南)如图,在平面直角坐标系中,已知点A(2,1),点B(3,1),平移线段AB,使点A落在点A1(2,2)处,则点B的对应点B1的坐标为()A(1,1)B(1,0)C(1,0)D(3,0)【答案】C【解析】由点A(2,1)平移后A1(2,2)可得坐标的变化规律是:左移4个单位,上移1个单位,点B的对应点B1的坐标(1,0)4(2019广西梧州)直线y3x+1向下平移2个单位,所得直线的解析式是()Ay3x+3By3x2Cy3x+2Dy3x1【答案】D【解析】直接利用一次函数平移规律进而得出答案直线y3x+1向下平移2个单位,所得直线的解析式是:y3x+123x15(2019广西百色)抛物线yx2+6x+7可由抛物线yx2如何平移得到的()A先向左平移3个单位,再向下平移2个单位B先向左平移6个单位,再向上平移7个单位C先向上平移2个单位,再向左平移3个单位D先回右平移3个单位,再向上平移2个单位【答案】A 【解析】按照“左加右减,上加下减”的规律求则可因为yx2+6x+7(x+3)22所以将抛物线yx2先向左平移3个单位,再向下平移2个单位即可得到抛物线yx2+6x+7【点拨】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减6(2020济南模拟)如图,在平面直角坐标系中,ABC的顶点都在方格纸的格点上,如果将ABC先向右平移4个单位长度,在向下平移1个单位长度,得到A1B1C1,那么点A的对应点A1的坐标为() A(4,3)B(2,4)C(3,1)D(2,5)【答案】D【解析】根据平移规律横坐标,右移加,左移减;纵坐标,上移加,下移减进行计算即可由坐标系可得A(2,6),将ABC先向右平移4个单位长度,在向下平移1个单位长度,点A的对应点A1的坐标为(2+4,61),即(2,5),【点拨】此题主要考查了坐标与图形的变化平移,关键是掌握点的坐标的变化规律7.将抛物线y=x22x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()Ay=(x1)2+4By=(x4)2+4Cy=(x+2)2+6Dy=(x4)2+6【答案】B 【解析】根据函数图象向上平移加,向右平移减,可得函数解析式将y=x22x+3化为顶点式,得y=(x1)2+2将抛物线y=x22x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为y=(x4)2+4【点拨】本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减8(2020咸宁模拟)如图,以点O为位似中心,将ABC放大得到DEF若AD=OA,则ABC与DEF的面积之比为()A1:2B1:4C1:5D1:6【答案】B【解析】以点O为位似中心,将ABC放大得到DEF,AD=OA,OA:OD=1:2,ABC与DEF的面积之比为:1:4【点拨】此题主要考查了位似图形的性质,得出位似比是解题关键9.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A48B96C84D42【答案】A【解析】考点是平移的性质。根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S四边形ODFC=S梯形ABEO,根据梯形的面积公式即可求解由平移的性质知,BE=6,DE=AB=10,OE=DEDO=104=6,S四边形ODFC=S梯形ABEO=(AB+OE)BE=(10+6)6=4810.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A甲种方案所用铁丝最长B乙种方案所用铁丝最长C丙种方案所用铁丝最长D三种方案所用铁丝一样长【答案】D【解析】考点是生活中的平移现象。分别利用平移的性质得出各图形中所用铁丝的长度,进而得出答案由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长二、填空题11(2020武威)如图,在平面直角坐标系中,OAB的顶点A,B的坐标分别为(3,3),(4,0)把OAB沿x轴向右平移得到CDE,如果点D的坐标为(6,3),则点E的坐标为 【答案】(7,0)【解析】利用平移的性质解决问题即可A(3,3),D(6,3),点A向右平移3个单位得到D,B(4,0),点B向右平移3个单位得到E(7,0)。12(2020枣庄模拟)如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C恰好落在直线AB上,则点C的坐标为 【答案】(1,2)【解析】直线y=2x+4与y轴交于B点,x=0时,得y=4,B(0,4)以OB为边在y轴右侧作等边三角形OBC,C在线段OB的垂直平分线上,C点纵坐标为2将y=2代入y=2x+4,得2=2x+4,解得x=1故答案为:(1,2)【点拨】本题考查了一次函数图象上点的坐标特征,等边三角形的性质,坐标与图形变化平移,得出C点纵坐标为2是解题的关键13
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号