资源预览内容
第1页 / 共10页
第2页 / 共10页
第3页 / 共10页
第4页 / 共10页
第5页 / 共10页
第6页 / 共10页
第7页 / 共10页
第8页 / 共10页
第9页 / 共10页
第10页 / 共10页
亲,该文档总共10页全部预览完了,如果喜欢就下载吧!
资源描述
DCMM数据管理能力成熟度评估模型,再解读根据国务院国资委印发的关于加快推进国有企业数字化转型工作的通知要求,明确指出了数据治理是国企数字化转型的必经之路。国企数字化转型方兴未艾,数据治理也被推向了“风口浪尖”。数字化转型,是当今时代企业的机遇,也是挑战。企业亟需一套符合中国国情,符合中国企业文化,并且能够指导企业开展数字化“基础设施”建设的参考框架,而DCMM(数据管理能力成熟度评估模型)或许就是一个合适的参考框架。01有关数据治理,业界有哪些成熟度评估模型?对于能力成熟度模型最早起源于CMM,现在发展成大家熟知的CMMI模型(软件能力成熟度模型),它是一种对组织在软件定义、实施、度量、控制和改善其软件过程的实践中各个发展阶段的描述形成的标准。CMMI模型是由卡耐基-梅隆大学旗下的CMMI协会开发的,2014年,CMMI协会在CMMI模型基础之上,开发并发布了数据管理领域的能力成熟度评估模型:CMMI-DMM。CMMI-DMM模型是业界比较权威的数据管理能力成熟度评估模型,我们今天分享DCMM模型在一定程度上也参考了DMM模型的一些内容,包括整体模型框架,过程域以及能力等级的划分等。在数据治理/数据管理领域,其实有很多能力成熟度模型可供参考,如下:CMMI-DMM数据管理能力成熟度评估模型。DMM模型用25个过程域(20个数据管理过程域和5个支持过程域),描述了企业数据管理应建立的各项能力,帮助组织开展数据管理过程实践,提升其数据管理的成熟度。CMMI协会Gartner企业信息管理成熟度模型。将企业信息管理分为了0-5个阶段,分别是:0无意识阶段,1意识阶段,2被动式阶段,3主动式阶段,4托管管理阶段,5有效管理阶段,帮助企业找到信息管理能力所处的位置。GartnerEDM-DCAM 数据管理能力成熟度模型。DCAM模型由企业数据管理协会(EDM Council-北美的一家研究金融行业数据管理的公益性组织)开发,目前已经发布了两个版本(这两个版本的模型在本公众号之前的文章中都有分享)。DCAM2.0模型包含了7大组件,分别是数据管理战略与业务案例,数据管理流程与资金,数据架构,技术架构,数据质量管理,数据治理,数据操作。EDM Council另外,除了Gartner、CMMI-DMM、EDM-DCAM,你可能还听过: MD3M 主数据管理成熟度模型源自荷兰乌得勒支大学的一篇硕士论文。 DataFlux 主数据管理成熟度模型由BI软件SAS公司旗下的DataFlux公司提出。 Oracle MDM主数据管理能力成熟度模型由甲骨文(Oracle )公司提出。 IBM 数据治理能力成熟度模型由IBM公司提出。以上模型,在笔者之前的文章中也做过相关的解读和分享,有兴趣的可以在本公众号的历史文章中查找。而我们今天要分享的DCMM模型这个我国首个数据管理领域的国家标准,在之前的文章中也有过介绍,距离上次的分享已经有1年半的时间了,过去了这么久,我又有了一些新的思考,迫不及待的想分享给大家。02DCMM简介,结构组成和能力等级划分DCMM简介DCMM(Data Management Capability Maturity Assessment Model,数据管理能力成熟度评估模型)是由全国信标委大数据标准工作组(国家工信部信软司主导,多家企业和研究机构共同组成)研发,并于2018年3月15日正式发布,是我国数据管理领域最佳实践的总结和提升。DCMM模型是一个整合了标准规范、管理方法论、评估模型等多方面内容的综合框架,他将组织内部数据能力划分为八个重要组成部分,描述了每个组成部分的定义、功能、目标和标准。该标准适用于组织在进行数据管理时候的规划,设计和评估,也可以作为针对信息系统建设状况的指导、监督和检查的依据。DCMM结构组成DCMM模型,按照组织、制度、流程、技术对数据管理能力进行了分析、总结,提炼出组织数据管理的八大过程域,即:数据战略、数据治理、数据架构、数据应用、数据安全、数据质量管理、数据标准、数据生命周期。这八个过程域共包含28个过程项,441项评价指标。数据战略:数据战略规划、数据战略实施、数据战略评估数据治理:数据治理组织、数据制度建设、数据治理沟通数据架构:数据模型、数据分布、数据集成与共享、元数据管理数据应用:数据分析、数据开放共享、数据服务数据安全:数据安全策略、数据安全管理、数据安全审计数据质量:数据质量需求、数据质量检查、数据质量分析、数据质量提升数据标准:业务数据、参考数据和主数据、数据元、指标数据数据生存周期:数据需求、数据设计和开放、数据运维、数据退役DCMM的能力等级划分与CMMI类似,DCMM模型将组织的数据能力成熟度划分为初始级、受管理级、稳健级、量化管理级和优化级共5个发展等级,帮助组织进行数据管理能力成熟度的评价。03与其他模型相比,DCMM有什么不同?DCMM与国外的数据管理能力成熟度模型相比,DCMM是具有中国特色的数据管理模型。DCMM建设概念图首先,从研制单位来讲,国外的数据管理成熟度模型要么是数据管理研究的相关协会,要么是咨询公司,要么是数据产品的供应商,都属于民间组织,而DCMM是由国家工信部信软司主导,数据管理领域的国家级标准。有个问题大家共同思考下:为什么国外的模型框架来自民间,而我国的模型框架出自官方?笔者理解:直接原因是只有官方(国家标准化管理委员会)才能发布国家标准。深层次上来讲,与中国传统文化有关,“官方”自古以来代表的都是权威,官方发布的内容具有公信度。第二,DCMM强调数据战略和数据标准,这是与DAMA-DMBOK中的数据管理框架以及CMMI-DMM模型是有所不同的。我们中国人做人做事讲求“无规矩不成方圆”,“规矩”就是做事的总则,规范和标准。在DCMM模型中,数据战略就是组织数据管理的最高总则,为组织的数据管理提供方向指引;数据标准是具体数据管理实践的执行规范,为组织的数据管理提供操作指导。第三,DCMM模型的数据治理过程域中的二级过程项“数据治理沟通”,这个是DCMM的一个亮点。个人认为:从数据治理战略的制定到落地执行都离不开沟通,沟通连接着数据治理各个环节,放在数据治理中可能更合适些。首先,启动数据治理项目,就必须说服高层领导,获得领导的支持,这需要沟通;其次,数据治理不是一个人或一个部门的事情,需要企业各部门的协调和配合,这需要沟通;第三,数据治理需要IT与业务的融合,让业务认可、让领导重视,这需要沟通;第四,落地数据标准、执行数据规范、培养数据思维,建立数据文化,这都需要沟通。因此,沟通应该是贯穿整个数据治理全周期、全过程的一项重要活动。最后,DCMM模型还重点强调数据应用,他将数据应用独立是其八大过程域之一,数据应用过程域包含了数据分析、数据开放共享、数据服务。所以严格意义上讲,DCMM模型评估的不单纯是组织的数据管理能力,还包括组织的数据应用能力。这在其他的数据管理成熟度模型中是看不到的。当然,也有人认为数据管理、数据应用是两个维度,甚至是两个专业领域的事情,放在一起评估不合适。我倒是认为,这没什么不妥的,数据治理的本质是为数据应用服务的,核心目标是为了让数据产生价值,离开这个目标搞数据治理,那就是典型的“为了治理而治理了”。但这里,我也有个小的疑问:为什么不把“数据集成共享”这个子项放在“数据应用”过程域中,而是放在了“数据架构”过程中?“数据集成共享”,我理解就是企业内部各系统或部门之间的数据交换共享,解决的是业务协同问题,应该放在“数据应用”似乎更合适吧?04DCMM模型使用,评估实施的四个阶段为促进标准落地应用,2018年成立中国电子工业标准化技术协会数据管理应用推进分会,在工信部信软司的指导下,不断丰富完善并建立了 DCMM 评估体系。DCMM的评估是在工信部信软司的指导下,由中国电子信息行业联合会统一组织,包括:评估机构选取、评估项目实施、优秀标杆评选、DCMM证书发放等。评估机构需要通过官方认证,才具有为企事业单位进行DCMM评估的资格。根据中国电子信息行业联合会的公开资料,DCMM评估分为以下四个阶段:准备阶段:收集及分析评估材料,确定评估的范围,成立评估小组并明确项目团队的各方职责。实施阶段:召开DCMM评估启动会,DCMM模型宣贯,开展现场评估。制定报告:形成DCMM评估结果,明确各过程域存在的问题和不足,指明改进方向。评审发布:提交报告及发放证书等。05DCMM的价值,为企业数字化转型赋能!与欧美国家相比,在数据管理领域我国一直缺乏完善的数据管理成熟度体系的研究,DCMM填补了这一空白,为国内组织的数据管理的能力的建设和发展提供了方向性指导。DCMM国家标准的发布对促进我国数据产业的发展有着重要的意义。 通过DCMM评估,有利于帮助企业更加熟练地管理数据资产,增强数据管理和应用的能力,并提供一致和可比较的基准,以衡量一段时间内的进展。 通过DCMM评估,有利于帮助企业理清数据管理能力的长处和不足在哪里,帮助企业确定选择治理的优先顺序、治理范围和内容,更有效地管理和使用数据。 通过DCMM评估,有利于帮助企业建立与企业发展战略相匹配的数据管理能力体系,包含组织体系、制度体系、标准体系以及工具和技术体系等。 通过DCMM评估,有利于帮助企业建立数据管理和应用的队伍,培养数字化人才,有利于推动数据思维和数据意识的建立。可能有人要问:DCMM真的这么好吗?个人认为:DCMM可以作为企业数据管理能力建设的指导性工具,也仅是一个工具,能否有助于实现上文描述的“四个有利于”,关键要看怎么用。DCMM评估,你是用它来获取高级别的认证,还是真正的寻找和改进企业数据管理和应用方面不足,这是两个层面的出发点,出发点不同结果是显而易见的。写在最后的话笔者经常讲企业做数据治理一定要想好数据治理的目标,不要“为了治理而治理”。DCMM评估也一样,一定要想清楚:Why为什么评估。评估是为了找到数据管理中的实际问题、不足,或优势,是为了更好的管理和应用好数据,从而为企业的数字化提供更好的支撑。数据管理能力成熟度的评估不是为了更“别人”争长短、较高低,不要为了获得更高的评价等级,将其作为一场“政治”竞赛。要通过数据管理成熟度的评估,真正发现问题、找到差距、提出改进方案和最佳路径,帮助企业实现数字化转型。
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号