资源预览内容
第1页 / 共18页
第2页 / 共18页
第3页 / 共18页
第4页 / 共18页
第5页 / 共18页
第6页 / 共18页
第7页 / 共18页
第8页 / 共18页
第9页 / 共18页
第10页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
.2017年XX省高考数学模拟应用题大全一1、如图,矩形公园中:,公园的左下角阴影部分为以为圆心,半径为的圆面的人工湖。现计划修建一条与圆相切的观光道路点、分别在边与上,为切点。1试求观光道路长度的最大值;2公园计划在道路右侧种植草坪,试求草坪面积的最大值。2梯形ABCD顶点B、C在以AD为直径的圆上,AD=2米,如图1,若电热丝由AB,BC,CD这三部分组成,在AB,CD上每米可辐射1单位热量,在BC上每米可辐射2单位热量,请设计BC的长度,使得电热丝辐射的总热量最大,并求总热量的最大值;图2图1第2题图如图2,若电热丝由弧,和弦BC这三部分组成,在弧,上每米可辐射1单位热量,在弦BC上每米可辐射2单位热量,请设计BC的长度,使得电热丝辐射的总热量最大3、XX省XX中学、南师附中、海门中学、天一中学2017届高三下学期期初考试如图,在某商业区周边有两条公路,在点处交汇,该商业区为圆心角,半径的扇形.现规划在该商业区外修建一条公路,与分布交于,要求与扇形弧相切,切点不在上.1设,试用表示新建公路的长度,求出满足的关系式,并写出的范围;2设,试用表示新建公路的长度,并且确定的位置,使得新建公路的长度最短.4、XX省联盟大联考2017届高三2月联考数学试题某校园内有一块三角形绿地如图1,其中,绿地内种植有一呈扇形的花卉景观,扇形的两边分别落在和上,圆弧与相切于点.1求扇形花卉景观的面积;2学校计划2017年年整治校园环境,为美观起见,设计在原有绿地基础上扩建成平行四边形如图2,其中,并种植两块面积相同的扇形花卉景观,两扇形的边都分别落在平行四边形的边上,圆弧都与相切,若扇形的半径为,求平行四边形绿地占地面积的最小值.5、XX省如皋市2016-2017学年度高三第二学期期初高三数学试卷如图所示,某工厂要设计一个三角形原料,其中1若,求的面积的最大值;2若的面积为1,问为何值时取得最小值.6、XX省中华中学、溧水高级中学、省句中、省扬中、XX一中、省镇中2017届高三下学期六校联考试卷某工厂要生产体积为定值V的漏斗,现选择半径为R的圆形马口铁皮,截取如图所示的扇形,焊制成漏斗1若漏斗的半径为R,求圆形铁皮的半径R;2这张圆形铁皮的半径R至少是多少?7、XXXX中学2017年高三开学检测悦达集团开发一种新产品,为便于运输,现欲在大丰寻找一个工厂代理加工生产该新产品,为保护核心技术,核心配件只能从集团购买且由集团统一配送,该厂每天需要此核心为200个,配件的价格为1.8元/个,每次购买需支付运费238元。每次购买来的配件还需支付保密费,标准如下:7天以内含7天,均按10元/天支付;7天以外,根据当天还未生产的剩余配件的数量,以每天0.03元/个支付。1当10天购买一次配件时,求该厂用于配件的保密费元值;2设该厂天购买一次配件,求该厂在这天中用于配件的总费用元关于的函数关系式,并求该厂多少天购买一次配件才能使平均每天支付的费用最少?8、XX省XX市2017届高三上学期期末考试数学试题某辆汽车以千米/小时的速度在高速公路上匀速行驶考虑到高速公路行车安全要求时,每小时的油耗所需要的汽油量为升,其中为常数,且.1若汽车以千米/小时的速度行驶时,每小时的油耗为升,欲使每小时的油耗不超过9升,求的取值范围;2求该汽车行驶千米的油耗的最小值.9、XX省XX市、XX市2017届高三年级第一次模拟考试数学试卷如图所示,某街道居委会拟在地段的居民楼正南方向的空白地段上建一个活动中心,其中米活动中心东西走向,与居民楼平行. 从东向西看活动中心的截面图的下部分是长方形,上部分是以为直径的半圆. 为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长不超过米,其中该太阳光线与水平线的夹角满足.1若设计米,米,问能否保证上述采光要求?F第18题图ABEDGC南居民楼活动中心2在保证上述采光要求的前提下,如何设计与的长度,可使得活动中心的截面面积最大?注:计算中取310、XX省苏北四市XX、宿迁、XX、XX2017届高三上学期期中考试数学试题某城市有一直角梯形绿地,其中,km,km现过边界上的点处铺设一条直的灌溉水管,将绿地分成面积相等的两部分1如图,若为的中点,在边界上,求灌溉水管的长度;ABCD第10题图EFABCD第10题图EF2如图,若在边界上,求灌溉水管的最短长度11、XX省XX市2017届高三调研测试数学试题某湿地公园内有一条河,现打算建一座桥图1将河两岸的路连接起来,剖面设计图纸图2如下:其中,点为轴上关于原点对称的两点,曲线是桥的主体,为桥顶,且曲线段在图纸上的图形对应函数的解析式为,曲线段均为开口向上的抛物线段,且分别为两抛物线的顶点设计时要求:保持两曲线在各衔接处的切线的斜率相等1求曲线段在图纸上对应函数的解析式,并写出定义域;2车辆从经到爬坡定义车辆上桥过程中某点所需要的爬坡能力为:该点与桥顶间的水平距离设计图纸上该点处的切线的斜率,其中的单位:米若该景区可提供三种类型的观光车:游客踏乘;蓄电池动力;内燃机动力,它们的爬坡能力分别为米,米,米,又已知图纸上一个单位长度表示实际长度米,试问三种类型的观光车是否都可以顺利过桥?12、XX省XX市2017届高三上学期期中考试数学试题如图所示,有一块矩形空地,km,=km,根据周边环境及地形实际,当地政府规划在该空地内建一个筝形商业区,筝形的顶点为商业区的四个入口,其中入口在边上不包含顶点,入口分别在边上,且满足点恰好关于直线对称,矩形内筝形外的区域均为绿化区. 1请确定入口的选址范围;2设商业区的面积为,绿化区的面积为,商业区的环境舒适度指数为,则入口如何选址可使得该商业区的环境舒适度指数最大?13、XX省XX市2017届高三上学期期中测试数学试题如图,某市在海岛A上建了一水产养殖中心。在海岸线上有相距70公里的B、C两个小镇,并且AB=30公里,AC=80公里,已知B镇在养殖中心工作的员工有3百人,C镇在养殖中心工作的员工有5百人。现欲在BC之间建一个码头D,运送来自两镇的员工到养殖中心工作,又知水路运输与陆路运输每百人每公里运输成本之比为12.ABDC1求的大小;2设,试确定的大小,使得运输总成本最少。14、XX省XX市2017届高三上学期期末一模考试数学试题如图,某公园有三条观光大道围成直角三角形,其中直角边,斜边现有甲、乙、丙三位小朋友分别在大道上嬉戏,所在位置分别记为点1若甲乙都以每分钟的速度从点出发在各自的大道上奔走,到大道的另一端时即停,乙比甲迟分钟出发,当乙出发分钟后,求此时甲乙两人之间的距离;2设,乙丙之间的距离是甲乙之间距离的倍,且,请将甲乙之间的距离表示为的函数,并求甲乙之间的最小距离15、2017年XX、XX一模如图,某机械厂要将长6 m,宽2 m的长方形铁皮ABCD进行裁剪已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处点C,D分别落在直线BC下方点M,N处,FN交边BC于点P,再沿直线PE裁剪1当EFP=时,试判断四边形MNPE的形状,并求其面积;2若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由16、2017年XX一模如图,矩形ABCD是一个历史文物展览厅的俯视图,点E在AB上,在梯形BCDE区域内部展示文物,DE是玻璃幕墙,游客只能在ADE区域内参观在AE上点P处安装一可旋转的监控摄像头,为监控角,其中M、N在线段DE含端点上,且点M在点N的右下方.经测量得知:AD=6米,AE=6米,AP=2米,.记弧度,监控摄像头的可视区域PMN的面积为S平方米1求S关于的函数关系式,并写出的取值范围;参考数据:2求的最小值.答案1解法一:设DOE=𝜃 ,因为点E、F分别在边OA与BC上,所以,则DOF=,.2分在RtDOE中,DE=tan 𝜃,在RtDOF中,DF=tan,.4分EF= DE+DF= tan 𝜃+, .5分,当时,cos𝜃min=,EFmax=2.7分在RtDOE中,OE=,由1可得.9分S= S矩形OABC S梯形OEFC=2 , .11分,令,解得,𝜃S+0S极大值.13分因为S在时有且仅有一个极大值,因此这个极大值也即S的最大值当时,Smax=.14分答:1观光道路EF长度的最大值为2km; 2草坪面积S的最大值为km.15分解法二:以O为做标原点,OA、OC分别为x,y轴建立直角坐标系O设D,则x02+y02=1 ,则直线EF:x0x+y0y=1,E,F,EF= ,当时,EFmax=2, S= S矩形OABC S梯形OEFC=2 由x02+y02=1,设x0=cos𝜃,y0=sin𝜃 ,下同法一2.解:设AOB,则AB2sin,BC2cos,总热量单位f 4cos+4 sin824 sin4,当sin,此时BC2cos,总热量最大 答:应设计BC长为米,电热丝辐射的总热量最大,最大值为单位 总热量单位g24cos,令g0,即24sin0,增区间0,减区间,当,g最大,此时BC2cos答:应设计BC长为米,电热丝辐射的总热量最大3、4、5、解:1以BC所在直线为x轴,BC的中垂线为y轴建立直角坐标系,则B,C设A,由得, 化简得.所以A点的轨迹为以2,0为圆心,为半径的圆. 所以.6分 2设AB=c,BC=a,AC=b,由得.10分令令得
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号