资源预览内容
第1页 / 共19页
第2页 / 共19页
第3页 / 共19页
第4页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
高中数学公式大全(所有)9900字 高中公式大全对数的性质及推导用表示乘方,用log(a)(b)表示以a为底,b的对数*表示乘号,/表示除号定义式:若an=b(a0且a1)则n=log(a)(b)基本性质:1.a(log(a)(b)=b2.log(a)(MN)=log(a)(M)+log(a)(N);3.log(a)(M/N)=log(a)(M)-log(a)(N);4.log(a)(Mn)=nlog(a)(M)推导1.这个就不用推了吧,直接由定义式可得(把定义式中的n=log(a)(b)带入an=b)2.MN=M*N由基本性质1(换掉M和N)alog(a)(MN) = alog(a)(M) * alog(a)(N)由指数的性质alog(a)(MN) = alog(a)(M) + log(a)(N)又因为指数函数是单调函数,所以log(a)(MN) = log(a)(M) + log(a)(N)3.与2类似处理MN=M/N由基本性质1(换掉M和N)alog(a)(M/N) = alog(a)(M) / alog(a)(N)由指数的性质alog(a)(M/N) = alog(a)(M) - log(a)(N)又因为指数函数是单调函数,所以log(a)(M/N) = log(a)(M) - log(a)(N)4.与2类似处理Mn=Mn由基本性质1(换掉M)alog(a)(Mn) = alog(a)(M)n由指数的性质alog(a)(Mn) = alog(a)(M)*n又因为指数函数是单调函数,所以log(a)(Mn)=nlog(a)(M)其他性质:性质一:换底公式log(a)(N)=log(b)(N) / log(b)(a)推导如下N = alog(a)(N)a = blog(b)(a)综合两式可得N = blog(b)(a)log(a)(N) = blog(a)(N)*log(b)(a)又因为N=blog(b)(N)所以blog(b)(N) = blog(a)(N)*log(b)(a)所以log(b)(N) = log(a)(N)*log(b)(a) 这步不明白或有疑问看上面的 所以log(a)(N)=log(b)(N) / log(b)(a)性质二:(不知道什么名字)log(an)(bm)=m/n*log(a)(b)推导如下由换底公式lnx是log(e)(x),e称作自然对数的底log(an)(bm)=ln(an) / ln(bn)由基本性质4可得log(an)(bm) = n*ln(a) / m*ln(b) = (m/n)*ln(a) / ln(b)再由换底公式log(an)(bm)=m/n*log(a)(b)-(性质及推导 完 )公式三:log(a)(b)=1/log(b)(a)证明如下:由换底公式 log(a)(b)=log(b)(b)/log(b)(a) -取以b为底的对数,log(b)(b)=1 =1/log(b)(a)还可变形得:log(a)(b)*log(b)(a)=1三角函数的和差化积公式sinsin2sin()/2cos()/2sinsin2cos()/2sin()/2coscos2cos()/2cos()/2 coscos2sin()/2sin()/2三角函数的积化和差公式sin cos1/2 sin()sin()cos sin1/2 sin()sin()cos cos1/2 cos()cos()sin sin-1/2 cos()cos( 乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2) ?a3-b3=(a-b(a2+ab+b2)三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b-bab |a-b|a|-|b| -|a|a|a|一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac0 注:方程有两个不等的实根 b2-4ac0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h正棱锥侧面积 S=1/2c*h 正棱台侧面积 S=1/2(c+c)h圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r 0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h定理:1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理 三角形两边的和大于第三边16 推论 三角形两边的差小于第三边17 三角形内角和定理 三角形三个内角的和等于18018 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等作者:尘世的Angel 2008-11-22 22:48 回复此发言-2 高中数学公式23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于6034 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号