资源预览内容
第1页 / 共22页
第2页 / 共22页
第3页 / 共22页
第4页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2022年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,则( )ABCD2如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点( )A向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变B向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变D向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变3已知集合A=x|x1,B=x|,则ABCD4已知抛物线上的点到其焦点的距离比点到轴的距离大,则抛物线的标准方程为( )ABCD5已知单位向量,的夹角为,若向量,且,则( )A2B2C4D66某四棱锥的三视图如图所示,则该四棱锥的体积为( )ABCD7定义在上的偶函数,对,且,有成立,已知,则,的大小关系为( )ABCD8已知集合U1,2,3,4,5,6,A2,4,B3,4,则( )A3,5,6B1,5,6C2,3,4D1,2,3,5,69如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,则( )A1BC2D310易经包含着很多哲理,在信息学、天文学中都有广泛的应用,易经的博大精深,对今天 的几何学和其它学科仍有深刻的影响下图就是易经中记载的几何图形八卦田,图中正八 边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田已知正八边 形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为( )ABCD11已知实数满足则的最大值为( )A2BC1D012党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,在中,点在边上,且,将射线绕着逆时针方向旋转,并在所得射线上取一点,使得,连接,则的面积为_14如图所示,在直角梯形中,、分别是、上的点,且(如图).将四边形沿折起,连接、(如图).在折起的过程中,则下列表述: 平面;四点、可能共面;若,则平面平面;平面与平面可能垂直.其中正确的是_.15已知函数在上仅有2个零点,设,则在区间上的取值范围为_16已知平面向量,且,则向量与的夹角的大小为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,三棱柱中,底面是等边三角形,侧面是矩形,是的中点,是棱上的点,且.(1)证明:平面;(2)若,求二面角的余弦值.18(12分)在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.(1)求动点的轨迹的方程;(2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.19(12分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况现分别从、三块试验田中各随机抽取株植物测量高度,数据如下表(单位:厘米): 组组组假设所有植株的生长情况相互独立从、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有数据的平均数记为从、三块试验田中分别再随机抽取株该种植物,它们的高度依次是、(单位:厘米)这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小(结论不要求证明)20(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的人的得分(满分:分)数据,统计结果如下表所示组别频数 (1)已知此次问卷调查的得分服从正态分布,近似为这人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求;(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.()得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;()每次赠送的随机话费和相应的概率如下表.赠送的随机话费/元概率现市民甲要参加此次问卷调查,记为该市民参加问卷调查获赠的话费,求的分布列及数学期望附:,若,则,.21(12分)在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.(1)当时,求M点的极坐标;(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.22(10分)如图,在矩形中,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.()求证:平面平面;()求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】试题分析:,故C正确考点:复合函数求值2A【解析】由函数的最大值求出,根据周期求出,由五点画法中的点坐标求出,进而求出的解析式,与对比结合坐标变换关系,即可求出结论.【详解】由图可知,又,又,为了得到这个函数的图象,只需将的图象上的所有向左平移个长度单位,得到的图象,再将的图象上各点的横坐标变为原来的(纵坐标不变)即可.故选:A【点睛】本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题.3A【解析】集合集合,故选A4B【解析】由抛物线的定义转化,列出方程求出p,即可得到抛物线方程【详解】由抛物线y22px(p0)上的点M到其焦点F的距离比点M到y轴的距离大,根据抛物线的定义可得,所以抛物线的标准方程为:y22x故选B【点睛】本题考查了抛物线的简单性质的应用,抛物线方程的求法,属于基础题5C【解析】根据列方程,由此求得的值,进而求得.【详解】由于,所以,即,解得.所以所以.故选:C【点睛】本小题主要考查向量垂直的表示,考查向量数量积的运算,考查向量模的求法,属于基础题.6B【解析】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为.故选:B.【点睛】本题考查了利用三视图求几何体体积的问题,是基础题7A【解析】根据偶函数的性质和单调性即可判断.【详解】解:对,且,有在上递增因为定义在上的偶函数所以在上递减又因为,所以故选:A【点睛】考查偶函数的性质以及单调性的应用,基础题.8B【解析】按补集、交集定义,即可求解.【详解】1,3,5,6,1,2,5,6,所以1,5,6.故选:B.【点睛】本题考查集合间的运算,属于基础题.9C【解析】连接AO,因为O为BC中点,可由平行四边形法则得,再将其用,表示.由M、O、N三点共线可知,其表达式中的系数和,即可求出的值.【详解】连接AO,由O为BC中点可得,、三点共线,.故选:C. 【点睛】本题考查了向量的线性运算,由三点共线求参数的问题,熟记向量的共线定理是关键.属于基础题.10B【解析】由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.11B【解析】作出可行域,平移目标直线即可求解.【详解】解:作出可行域:由得,由图形知,经过点时,其截距最大,此时最大得,当时,故选:B【点睛】考查线性规划,是基础题.12D【解析】 根据四个列联表中的等高条形图可知, 图中D中共享与不共享的企业经济活跃度的差异最大, 它最能体现共享经济对该部门的发展有显著效果,故选D二、填空题:本题共4小题,每小题5分,共20分。13【解析】由余弦定理求得,再结合正弦定理得,进而得,得,则面积可求【详解】由,得,解得.因为,所以,所以.又因为,所以.因为,所以.故答案为【点睛】本题考查正弦定理、余弦定理的应用,考查运算求解能力,是中档题14【解析】连接、交于点,取的中点,证明四边形为平行四边形,可判断命题的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题的正误.综合可得出结论.【详解】对于命题,连接、交于点,取的中点、,连接、,如下图所示:则且,四边形是矩形,且,为的中点,为的中点,且,且,四边形为平行四边形,即,平面,平面,平面,命题正确;对于命题,平面,平面,平面,若四点、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得,则,但四边形为梯形且、为两腰,与相交,矛盾.所以,命题错误;对于命题,连接、,设,则,在中,则为等腰直角三角形,且,且,由余弦定理得,又,平面,平面,、为平面内的两条相交直线,所以,平面,平面,平面平面,命题正确;对于命题,假
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号