资源预览内容
第1页 / 共6页
第2页 / 共6页
第3页 / 共6页
第4页 / 共6页
第5页 / 共6页
第6页 / 共6页
亲,该文档总共6页全部预览完了,如果喜欢就下载吧!
资源描述
.一个整数的约数个数与约数和的计算方法,两数的最大公约数与最小公倍数之间的关系,分数的最小公倍数.涉及一个整数的约数,以及假设干整数最大公约数与最小公倍数的问题,其中质因数分解发挥着重要作用1.数360的约数有多少个这些约数的和是多少 【分析与解】 360分解质因数:360=222335=23325; 360的约数可以且只能是2a3b5c,(其中a,b,c均是整数,且a为03,6为02,c为01)因为a、b、c的取值是相互独立的,由计数问题的乘法原理知,约数的个数为(3+1)(2+1)(1+1)=24 我们先只改动关于质因数3的约数,可以是l,3,32,它们的和为(1+3+32),所以所有360约数的和为(1+3+32)2y5w; 我们再来确定关于质因数2的约数,可以是l,2,22,23,它们的和为(1+2+22+23),所以所有360约数的和为(1+3+32)(1+2+22+23)5w; 最后确定关于质因数5的约数,可以是1,5,它们的和为(1+5),所以所有360的约数的和为(1+3+32)(1+2+22+23)(1+5) 于是,我们计算出值:13156=1170 所以,360所有约数的和为1170评注:我们在此题中分析了约数个数、约数和的求法.下面我们给出一般结论: I.一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23527,所以它的约数有(3+1)(2+1)(1+1)=432=24个.(包括1和它自身).约数的和是在严格分解质因数后,将M的每个质因数最高次幂的所有约数的和相乘所得到的积如:21000=233537,所以21000所有约数的和为(1+2+22+23)(1+3)(1+5+52+53)(1+7)=748802.一个数是5个2,3个3,6个5,1个7的连乘积.这个数有许多约数是两位数,则在这些两位数的约数中,最大的是多少【分析与解】 设这个数为A,有A=2533567,99=3311,98=277,97均不是A的约数,而96=253为A的约数,所以96为其最大的两位数约数3.写出从360到630的自然数中有奇数个约数的数【分析与解】 一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23527,所以它的约数有(3+1)(2+1)(1+1)=432=24个.(包括1和它自身) 如果*个自然数有奇数个约数,则这个数的所有质因子的个数均为偶数后均是奇数,所得的乘积才能是奇数.而所有质因数的个数均是完全平方数(除0外)有奇数个约数,反过来,有奇数个约数的数一定是完全平方数 由以上分析知,我们所求的为360630之间有多少个完全平方数 1818=324,1919=361,2525=625,2626=676,所以在360630之间的完全平方数为192,202,212,222,232,242,252即360到630的自然数中有奇数个约数的数为361,400,441,484,529,576,6254.今有语文课本42册,数学课本112册,自然课本70册,平均分成假设干堆,每堆中这3种课本的数量分别相等.则最多可分多少堆【分析与解】 显然堆数是42的约数,是112的约数,是70的约数.即为42,112,70的公约数,有(42,112,70)=14所以,最多可以分成14堆5.加工*种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要多少名工人【分析与解】 为了使生产均衡,则每道工序每小时生产的零件个数应相等,设第一、二、三道工序上分别有A、B、C个工人,有6A=10B=15C=k,则k的最小值为6,10,15的最小公倍数,即6,10,15=30所以A=5,B=3,C=2,则三道工序最少共需要5+3+2=10名工人6.有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,则多少分钟之后,3人又可以相聚【分析与解】 设在*分钟后3人再次相聚,甲走了120*米,乙走了lOO*米,丙走了70*米,他们3人之间的路程差均是跑道长度的整数倍 即120*-100*,120*-70*,lOO*-70*均是300的倍数,则300就是20*,50*,30*的公约数 有(20*,50*,30*):300,而(20*,50*,30*)=*(20,50,30)=lO*,所以*=30 即在30分钟后,3人又可以相聚7.3条圆形跑道,圆心都在操场中的旗杆处,甲、乙、内3人分别在里圈、中圈、外圈沿同样的方向跑步.开场时,3人都在旗杆的正东方向,里圈跑道长千米,中圈跑道长千米,外圈跑道长3千米,乙每小时跑4千米,丙每小时跑5千米.问他们同时出发,几小时后,3人第一次同时回到出发点【分析与解】 甲跑完一圈需小时,乙跑一圈需小时,丙跑一圈需则他们同时回到出发点时都跑了整数圈,所以经历的时间为,的倍数,即它们的公倍数而.所以,6小时后,3人第一次同时回到出发点.评注:求一组分数的最小公倍数,先将这些分数化为最简分数,将分子的最小公倍数作为新分数的分子,将分母的最大公约数作为新分数的分母,这样得到的新分数即为所求的最小公倍数;求一组分数的最大公约数,先将这些分数化为最简分数,将分子的最大公约数作为新分数的分子,将分母的最小公倍数作为新分数的分母,这样得到的新分数即为所求的最大公约数.8.甲数和乙数的最大公约数是6最小公倍数是90.如果甲数是18,则乙数是多少?【分析与解】 有两个数的最大公约数与最小公倍数的乘积等于这两数的乘积.有它们的最大公约数与最小公倍数的乘积为690=540,则乙数为54018=309.A,B两数都仅含有质因数3和5,它们的最大公约数是75.数A有12个约数,数B有10个约数,则A,B两数的和等于多少 【分析与解】方法一:由题意知A可以写成352a,B可以写成3526,其中a、b为整数且只含质因子3、5. 即A:31+*52+y,B=31+m52+n,其中*、Y、m、n均为自然数(可以为0) 由A有12个约数,所以(1+*)+1(2+y)+1=(2+*)(3+y)=12,所以.对应A为31+252=675,31+152+1=1125,或31+052+4=46875; 由B有10个约数,所以(1+m)+1(2+n)+l=(2+m)(3+n):10,所以.对应B为31+052+2=1875只有(675,1875)=75,所以A=675,B=1875则A,B两数的和为675+1875=2550方法二:由题中条件知A、B中有一个数质因数中出现了两次5,多于一次3,则,先假设它出现了N次3,则约数有:(2+1)(N+1):3(N+1)个12与10其中只有12是3的倍数,所以3(N+1)=12,易知N=3,这个数是A,即A=3352=675 则B的质数中出现了一次3,多于两次5,则出现了M次5,则有:(1+1)(M+1)=2(M+1)=10,M=4.B=354=1875则A,B两数的和为675+1875=255010.有两个自然数,它们的和等于297,它们的最大公约数与最小公倍数之和等于693.这两个自然数的差等于多少【分析与解】 设这两数为a,b,记a=(a,b)q1,b=(a,b)q2它们的和为:a+b=(a,b)ql+(a,b)q2=(a,b)(q1+q2)=297 它们的最大公约数与最小公倍数的和为: a,b+(a,b)=(a,b)qlq2+(a,b)=(a,b)(qlq2+1)=693,且(q1,q2)=1. 综合、知(a,b)是297,693的公约数,而(297,693)=99,所以(a,b)可以是99,33,1l,9,3,1:(a,b)=99,则(q1+q2)=3,(qlq2+1)=7,即qlq2=6=23,无满足条件的ql,q2;:(a,b)=33,则(q1+q2)=9,(q1q2+1)=21,即q1q2=20=225,则ql=5,q2=4时满足,a=(a,b)q1=335=165,b=(a,b)q2=334=132,则a-b=165-132=33;:(a,b)=11,则(q1+q2)=27,(q1q2+1)=63,即qq2=62=231,无满足条件的q1,q2;一一验证第四种情况,第五种情况,第六种情况没有满足条件的q1q2所以,这个两个自然数的差为3311.两个不同自然数的和是60,它们的最大公约数与最小公倍数的和也是60.问这样的自然数共有多少组【分析与解】设这两数为a,b,记a=(a,b)q1,b=(a,b)q2它们的和为:a+b=(a,b)q1+(a,b)q2=(a,b)(ql+q2)=60它们的最大公约数与最小公倍数的和为: a,b+(a,b)=(a,b)q1q2+(a,b)=(a,b)(q1q2+1)=60, 且(q1,q2)=1 联立、有(ql+q2)=(q1q2+1),即ql+q2-qlq2=1,(ql-1)(1-q2)=0,所以ql=1或q2=1即说明一个数是另一个数的倍数,不妨记a=kb(k为非零整数),有,即确定,则k确定,则kb即a确定 60的约数有2,3,4,5,6,10,12,15,20,30,60这11个,b可以等于2,3,4,5,6,1012,15,20,30这10个数,除了60,因为如果6=60,则(k+1)=1,而k为非零整数 对应的a、b有10组可能的值,即这样的自然数有10组 进一步,列出有(a,b)为(58,2),(57,3),(56,4),(55,5),(54,6),(50,10),(48,12),(45,15),(40,20),(30,30) 评注:如果两个自然数的和等于这两个数最大公约数与最小公倍数的和,则这两个数存在倍数关系12.3个连续的自然数的最小公倍数是9828,则这3个自然数的和等于多少 【分析与解】 假设三个连续的自然数中存在两个偶数,则它们的最小公倍数为三个数乘积的一半; 假设三个连续的自然数中只存在一个偶数,则它们的最小公倍数为三个数的乘积则当a,a+1,a+2中有2个偶数时,a(a+1)(a+2)=98282, 当a,a+1,a+2中有1个偶数时,a(a+1)(a+2)=9828 对9828分解质因数:9828=22333713,我们注意,13是其最大的质因数,验证不存在3个连续的自然数的积为9828则这三个自然数的积只能是98282,此时这三个数中存在两个偶数,有98282=222333713 132=26,有26,27,28三个数的积为98282,所以这三个连续的自然数为26,27,28,其中有两个偶数,满足题意
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号