创新技术讲座(1)光通信新技术光通信新技术 光纤放大器光纤放大器 光波分复用技术光波分复用技术 光交换技术光交换技术 光孤子通信光孤子通信 相干光通信技术相干光通信技术 光时分复用技术光时分复用技术 波长变换技术波长变换技术一、一、光光 纤纤 放放 大大 器器 1.半导体光放大器的优点是小型化,易与其他半导体器件集成;缺点是性能与光偏振方向有关,器件与光纤的耦合损耗大。2.光纤放大器的性能与光偏振方向无关,器件与光纤的耦合损耗很小。光放大器有半导体光放大器和光纤放大器两种类型。光纤放大器是把工作物质制作成光纤形状的固体激光器,称光纤激光器。20世纪80年代末期,推出掺铒光纤放大器。1.掺铒光纤(EDF)中,铒离子(Er3+)有三个能级:能级1代表基态,能量最低;能级2是亚稳态,处于中间能级;能级3代表激发态,能量最高。掺铒光纤放大器工作原理掺铒光纤放大器工作原理2.当泵浦(抽运)光的光子能量等于能级3和能级1的能量差时,铒离子吸收泵浦光从基态跃迁到激发态(13)。但激发态不稳定,Er3+很快返回到能级2。3.若输入信号光的光子能量等于能级2和能级1的能量差,处于能级2的Er3+将跃迁到基态(21),产生受激辐射光,信号光得到放大。掺铒光纤放大器(EDFA)的工作原理:图 1掺铒光纤放大器的工作原理(a)硅光纤中铒离子的能级图;(b)EDFA的吸收和增益频谱 4.激发态不稳定,Er3+很快返回到能级2。如果输入的信号光的光子能量等于能级2和能级1的能量差,则处于能级2的Er3+将跃迁到基态(21),产生受激辐射光,信号光得到放大。泵浦光能量转换为信号光。5.为提高放大器增益,应提高对泵浦光的吸收,使基态Er3+尽可能跃迁到激发态。图2 掺铒光纤放大器的特性(a)输出信号光功率与泵浦光功率的关系;(b)小信号增益与泵浦光功率的关系掺铒光纤放大器的构成和特性掺铒光纤放大器的构成和特性掺铒光纤放大器主要由掺铒光纤(EDF)、高功率泵浦光源、波分复用器和光隔离器组成。波分复用器要求插入损耗小,熔拉双锥光纤耦合器型和干涉滤波型波分复用器最适用。对泵浦光源的基本要求是大功率和长寿命。高增益掺铒光纤(EDF)的增益取决于Er3+的浓度、光纤长度和直径以及泵浦光功率等,通常由实验获得最佳增益。隔离器作用是防止光反射,保证系统稳定工作和减小噪声,要求插入损耗小,反射损耗大。图3-1 光纤放大器构成方框图 图3-2 实用光纤放大器外形图及其构成方框图EDFA特性:在泵浦光功率一定的条件下,输入信号光功率较小时,放大器增益不随输入信号光功率变化,基本保持不变。当信号光功率增加到一定值 (一般为20dBm),增益随信号光功率增加而下降,输出信号光功率达到饱和。图4 掺铒光纤放大器增益、噪声指数和输出光功率与输 入光功率的关系曲线掺铒光纤放大器的优点和应用掺铒光纤放大器的优点和应用1.工作波长落在光纤通信最佳波段(15001600 nm);主体是一段光纤(EDF),与传输光纤的耦合损耗很小,可达0.1dB。2.增益高,约为3040 dB;饱和输出光功率大,约为1016 dBm;增益特性与光偏振状态无关。3.噪声指数小,一般为47 dB;用于多信道传输时,隔离度大,无串扰,适用于波分复用系统。EDFA主要优点:4.频带宽,在1550nm窗口,频带宽度为2040nm,可进行多信道传输,有利于增加传输容量。若加1310nm掺镨光纤放大器(PDFA),频带可增加一倍。“波分复用+光纤放大器”可充分利用光纤带宽增加传输容量。1550nmEDFA应 用:副 载 波 CATV系 统,WDM或OFDM系统,相干光系统以及光孤子通信系统应用EDFA增加传输距离。图5 光纤放大器的应用形式 (a)中继放大器;(b)前置放大器和后置放大器 二、二、光波分复用技术光波分复用技术光波分复用原理光波分复用原理1.WDM的概念的概念光波分复用(WDM)是在一根光纤中同时传输多个波长光信号的技术。基本原理:在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端将组合波长的光信号分开(解复用),作进一步处理,恢复出原信号后送入不同的终端,称光波分复用技术。图6 中心波长在1.3 m和1.55 m的硅光纤低损耗传输窗口 (插图表示1.55 m传输窗口的多信道复用)在光纤两个低损耗传输窗口:波长为1.31m(1.251.35m)的窗口,相应的带宽 为中心波 长 和 相 应 的 波 段 宽 度,c为 真 空 中 光 速)为17700GHz;波长为1.55m(1.501.60m)的窗口,相应带宽为12500GHz。两个窗口合在一起,总带宽超过30THz。在同一窗口中信道间隔较小的波分复用称密集波分复用(DWDM)。该系统是在1550 nm波长区段内,同时用8,16或更多个波长在一对光纤上构成光通信系统,其中各个波长间的间隔为1.6nm、0.8nm或更低。用WDM 和DWDM区分是1310/1550 nm 简单复用还是在1550 nm波长区段内密集复用。1310/1550 nm复用超出EDFA的增益范围,用WDM来代替DWDM。在光层中,相邻光纤链路中的波长通道连接形成跨越多个OXC和OADM的光通路,完成端到端的信息传送,光通路可根据需要灵活、动态地建立和释放,即为WDM全光网络。在WDM链路的交叉(结点)处设置以波长为单位对光信号进行交叉连接的光交叉连接设备(OXC),或进行光上下路的光分插复用器(OADM),可在原来由光纤链路组成的物理层上面形成新的光层。2.WDM系统的基本形式系统的基本形式将不同波长的信号结合在一起经一根光纤输出的器件称复用器(也叫合波器)。反之,经同一传输光纤送来的多波长信号分解为各个波长分别输出的器件称为解复用器(也叫分波器)。两种器件互易(双向可逆),即将解复用器的输出端和输入端反过来用,为复用器。WDM系统的基本构成:1.双纤单向传输:在发送端将载有信息的、不同波长已调光信号1,2,n通过光复用器组合,在一根光纤中单向传输。各信号通过不同光波长携带,彼此之间不混淆。在接收端通过光解复用器将不同波长的信号分开,完成多路光信号传输的任务。2.单纤双向传输:双向WDM传输是指光通路在一根光纤上同时向两个不同的方向传输,所用波长相互分开,以实现双向全双工的通信。系统设计考虑的系统因素:光反射、双向通路间的隔离、串扰类型以及数值、两个方向传输的功率电平值和相互间的依赖性,使用双向光纤放大器。设置光分插复用器(OADM)或光交叉连接器(OXC),使各波长光信号进行合流与分流,实现波长的上下路(Add/Drop)和路由分配,合理插入或分出信号。双向WDM系统开发和应用要求较高,但可减少使用光纤和线路放大器的数量。图7 双纤单向WDM传输图8 单纤双向WDM传输其中Pi为发送进输入端口的光功率;P0为从输出端口接收到的光功率。1.插入损耗:由于增加光波分复用器/解复用器产生的附加损耗,定义为该无源器件的输入和输出端口之间的光功率之比,即3.光波分复用器的性能参数光波分复用器的性能参数波分复用器的基本要求:插入损耗小,隔离度大,带内平坦,带外插入损耗变化陡峭,温度稳定性好,复用通路数多,尺寸小等。2.串扰抑制度:指其他信道的信号耦合进某一信道,并使该信道传输质量下降的影响程度。其中Pi是波长为i的光信号的输入光功率,Pij是波长为i的光信号串入到波长为j信道的光功率。其中Pj为发送进输入端口的光功率,Pr为从同一个输入端口接收到的返回光功率。3.回波损耗:从无源器件的输入端口返回的光功率与输入光功率的比,即4.反射系数:在WDM器件的给定端口的反射光功率Pr与入射光功率Pj之比,即5.工作波长范围:指WDM器件能够按照规定的性能要求工作的波长范围(min到max)。6.信道宽度:光源间为避免串扰应具有的波长间隔。7.偏振相关损耗:由于偏振态的变化造成插入损耗的最大变化值。WDM系统的基本结构系统的基本结构WDM系统的组成:光发射机、光中继放大、光接收机、光监控信道和网络管理系统。OTU输出端满足G.692的光接口,即标准的光波长和满足长距离传输要求的光源;利用合波器合成多路光信号;通过光功率放大器(BA)放大输出多路光信号。光发射机:位于WDM系统的发送端,将来自终端设备输出的光信号,利用光转发器(OTU)把非特定波长的光信号转换成具有稳定的特定波长的光信号。图9 实际WDM系统的基本结构经过一定距离传输后,用掺铒光纤放大器(EDFA)对光信号进行中继放大。根据具体情况,将EDFA用作“线放(LA)”,“功放(BA)”和“前放(PA)”。增益平坦技术:使EDFA对不同波长的光信号具有接近相同的放大增益。接收端,光前置放大器(PA)放大经传输而衰减的主信道光信号,分波器从主信道光信号中分出特定波长的光信号。接收机要能承受有一定光噪声的信号,有足够电带宽。光监控信道(OSC):监控系统内各信道的传输情况;网络管理系统:通过光监控信道物理层传送开销字节到其他结点或接收来自其他结点的开销字节对WDM系统进行管理,实现配置管理、故障管理、性能管理和安全管理等功能,与上层管理系统相连。1.发送端,插入本结点产生的波长为s(1510nm)的光监控信号,与主信道的光信号合波输出;2.接收端,将接收到的光信号分离,输出s(1510 nm)波长的光监控信号和业务信道光信号。传送帧同步字节、公务字节和网管所用的开销字节。WDM技术的主要特点技术的主要特点1.充分利用光纤巨大的带宽资源(低损耗波段)。2.WDM技术使用各波长的信道相互独立,可传输特性和速率完全不同的信号。3.WDM技术使N个波长复用在单根光纤中传输,实现单根光纤双向传输,节省线路投资。4.降低器件的超高速要求5.高度的组网灵活性、经济性和可靠性光滤波器与光波分复用器光滤波器与光波分复用器光滤波器的应用:单纯的滤波应用、波分复用/解复用器中应用和波长路由器中应用。波分复用器和解复用器主要用在WDM终端和波长路由器以及波长分插复用器(WADM)中。波长路由器用于波长选路网络,它有两个输入端口和两个输出端口,每路输入都载有一组WDM信号。路由器交换波长1和4:在输入端口1上的波长中,若12和13由输出端口1输出,11和14由输出端口2输出;在输入端口2上的波长中,若22和23由输出端口2输出,则21和24由输出端口1输出。图10 光滤波器的三种应用(a)单纯的滤波应用;(b)波分复用器中应用;(c)波长路由器中应用1.有较低的插入损耗,且损耗与输入光的偏振态无关。若波长路由器的路由方式不随时间变化,称静态路由器;路由方式随时间变化,称动态路由器。静态路由器可用波分复用器构成。光滤波器的要求:波长分插复用器可看成波长路由器的简化形式,它有一个输入端口、一个输出端口,一个用于分插波长的本地端口。2.滤波器的通带对温度的变化不敏感。3.单个滤波器的通带传输特性平直,以便能够容纳激光器波长的微小变化。平直程度常用1 dB带宽衡量。图11 由波分复用器构成静态路由器 图12 光滤波器的1 dB带宽a:用于将光分离为不同波长的单色光。WDM系统中光栅用在解复用器中,分离出各个波长。波长选择技术及其在WDM系统中的应用:1.光栅:光栅:b:光栅基本原理:设两个相邻缝隙间距即栅距为a,光源离光栅平面足够远(相对于a而言),入射角为i,衍 射 角 为 d,通 过 两 相 邻 缝 隙 对 应 光 线 的 光 程 差 由()决定,图13 光栅(a)透射光栅;(b)反射光栅 图14 透射光栅的工作原理 a:传输媒质的周期性微扰可看作布喇格光栅;微扰常引起媒质折射率周期性的变化。其中m为整数,当a和i一定时,不同d对应不同的波长,像面上不同点对应不同的波长。光栅方程为2.布喇格光栅布喇格光栅b:半导体激光器用布喇格光波导作分布反馈可获得单频输出(如DFB激光器);光纤中写入布喇格光栅后用于光滤波器、光分插复用器和色散补偿器。一个波的能量可耦合到另一个波中。为光栅周期.c:设两列波沿着同一方向传播,其传播常数分别为