资源描述
北师大版九年级下册数学期末试卷含答案解析 一.选择题(共10小题) 1.下列式子错误的是(  ) A.cos40°=sin50° B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30° 2.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是(  ) A. 斜坡AB的坡度是10° B.斜坡AB的坡度是tan10° B. C.AC=1.2tan10°米 D.AB=米 3.已知,在Rt△ABC中,∠C=90°,AB=,AC=1,那么∠A的正切tanA等于(  ) A. B.2 C. D. 4.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是(  ) A. B. C. D. 5.若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为(  ) A.y=(x﹣2)2+3 B.y=(x﹣2)2+5 C.y=x2﹣1 D.y=x2+4 6.若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为(  ) A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=1 7.如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=(  ) A.5 B.7 C.9 D.11 8.如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD分别等于(  ) A.40°,80° B.50°,100° C.50°,80° D.40°,100° 9.已知⊙O的半径OD垂直于弦AB,交AB于点C,连接AO并延长交⊙O于点E,若AB=8,CD=2,则△BCE的面积为(  ) A.12 B.15 C.16 D.18 10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是(  ) A.1 B.2 C.3 D.4 二.填空题(共10小题) 11.在△ABC中,∠C=90°,AB=13,BC=5,则sinA的值是  . 12.在将Rt△ABC中,∠A=90°,∠C:∠B=1:2,则sinB=  . 13.已知cosα=,则的值等于  . 14.已知抛物线y=ax2﹣3x+c(a≠0)经过点(﹣2,4),则4a+c﹣1=  . 15.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为  . 16.已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为  . 17.若⊙O的直径为2,OP=2,则点P与⊙O的位置关系是:点P在⊙O  . 18.如图,⊙O的直径CD=20cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6cm,则AB的长为  cm. 19.已知AB、BC是⊙O的两条弦,AB=AC,∠AOB=120°,则∠CAB的度数是  . 20.二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是  . 三.解答题(共10小题) 21.计算:. 22.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E. (1)求线段CD的长; (2)求cos∠ABE的值. 23.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC. (1)求证:AB=AC; (2)若AB=4,BC=2,求CD的长. 24.如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC. (1)试判断直线CD与⊙O的位置关系,并说明理由; (2)若AD=2,AC=,求AB的长. 25.如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB. (1)判断BD与⊙O的位置关系,并说明理由; (2)若CD=15,BE=10,tanA=,求⊙O的直径. 26.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示. (1)求y与x之间的函数关系式; (2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克? (3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少? 27.为了增强学生体质,学校鼓励学生多参加体育锻炼,小胖同学马上行动,每天围绕小区进行晨跑锻炼.该小区外围道路近似为如图所示四边形ABCD,已知四边形ABED是正方形,∠DCE=45°,AB=100米.小胖同学某天绕该道路晨跑5圈,时间约为20分钟,求小胖同学该天晨跑的平均速度约为多少米/分?(结果保留整数,≈1.41) 28.据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m) (1)求B,C的距离. (2)通过计算,判断此轿车是否超速. 29.如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D. (1)求此抛物线的解析式. (2)求此抛物线顶点D的坐标和对称轴. (3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由. 30.在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D. (1)请直接写出点A,C,D的坐标; (2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标; (3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.   北师大版九年级下册数学期末试卷 参考答案与试题解析   一.选择题(共10小题) 1.(2016•永州)下列式子错误的是(  ) A.cos40°=sin50° B.tan15°•tan75°=1 C.sin225°+cos225°=1 D.sin60°=2sin30° 【分析】根据正弦和余弦的性质以及正切、余切的性质即可作出判断. 【解答】解:A、sin40°=sin(90°﹣50°)=cos50°,式子正确; B、tan15°•tan75°=tan15°•cot15°=1,式子正确; C、sin225°+cos225°=1正确; D、sin60°=,sin30°=,则sin60°=2sin30°错误. 故选D. 【点评】本题考查了互余两个角的正弦和余弦之间的关系,以及同角之间的正切和余切之间的关系,理解性质是关键.   2.(2016•巴中)一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是(  ) A.斜坡AB的坡度是10° B.斜坡AB的坡度是tan10° C.AC=1.2tan10°米 D.AB=米 【分析】根据坡度是坡角的正切值,可得答案. 【解答】解:斜坡AB的坡度是tan10°=,故B正确; 故选:B. 【点评】本题考查了坡度坡角,利用坡度是坡角的正切值是解题关键.   3.(2016•钦州校级自主招生)已知,在Rt△ABC中,∠C=90°,AB=,AC=1,那么∠A的正切tanA等于(  ) A. B.2 C. D. 【分析】根据勾股定理求出BC,根据正切的定义计算即可. 【解答】解:∵∠C=90°,AB=,AC=1, ∴BC==2, 则tanA==2, 故选:B. 【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与邻边b的比叫做∠A的正切是解题的关键.   4.(2016•赤峰)函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是(  ) A. B. C. D. 【分析】将一次函数解析式展开,可得出该函数图象与y轴交于负半轴,分析四个选项可知,只有C选项符合,由此即可得出结论. 【解答】解:一次函数y=k(x﹣k)=kx﹣k2, ∵k≠0, ∴﹣k2<0, ∴一次函数与y轴的交点在y轴负半轴. A、一次函数图象与y轴交点在y轴正半轴,A不正确; B、一次函数图象与y轴交点在y轴正半轴,B不正确; C、一次函数图象与y轴交点在y轴负半轴,C可以; D、一次函数图象与y轴交点在y轴正半轴,D不正确. 故选C. 【点评】本题考查了一次函数的图象,解题的关键是分析一次函数图象与y轴的交点.本题属于基础题,难度不大,解决该题时,由一次函数与y轴的交点即可排除了A、B、D三个选项,因此只需分析一次函数图象即可得出结论.   5.(2016•眉山)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为(  ) A.y=(x﹣2)2+3 B.y=(x﹣2)2+5 C.y=x2﹣1 D.y=x2+4 【分析】思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题. 【解答】解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位, ∵y=(x﹣1)2+2, ∴原抛物线图象的解析式应变为y=(x﹣1+1)2+2﹣3=x2﹣1, 故答案为C. 【点评】本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.   6.(2016•宿迁)若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为(  ) A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x
点击显示更多内容>>
收藏
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号