资源描述
液晶显示产品项目 质量管理制度 目录 一、 产业环境分析 3 二、 液晶显示行业概况 3 三、 必要性分析 4 四、 质量数据与分布规律 5 五、 过程质量控制的特点 8 六、 过程能力 13 七、 过程能力的计算和评价 15 八、 控制图应用的程序 16 九、 控制图的基本原理 19 十、 生产过程的质量控制 23 十一、 工艺准备质量管理 28 十二、 设计与开发的质量职能 36 十三、 设计开发质量管理内容 40 十四、 顾客服务的质量管理 44 十五、 产品销售的质量职能 47 十六、 项目基本情况 48 十七、 进度计划 51 项目实施进度计划一览表 51 十八、 经济效益评价 53 营业收入、税金及附加和增值税估算表 53 综合总成本费用估算表 55 利润及利润分配表 57 项目投资现金流量表 59 借款还本付息计划表 61 十九、 投资方案分析 62 建设投资估算表 64 建设期利息估算表 65 流动资金估算表 67 总投资及构成一览表 68 项目投资计划与资金筹措一览表 69 一、 产业环境分析 综合研判,“十三五冶时期我省仍处于可以大有作为的重要战略机遇期,但内涵发生了深刻变化,正在由原来加快发展速度的机遇转变为加快转变经济发展方式的机遇,由原来规模快速扩张的机遇转变为提高发展质量和效益的机遇。增强忧患意识,强化责任担当,推动经济发展新常态下的深度调整与转型攻坚,实现经济社会持续健康发展,是摆在全省面前长期而艰巨的使命任务。作为改革开放先行省,我们必须按照“三个定位、两个率先冶目标要求,准确把握战略机遇期内涵的深刻变化,深刻认识、主动适应、率先引领经济发展新常态,保持战略定力,增强发展自信,坚持稳中求进、稳中提质,用发展的办法解决前进中的问题,推动经济增长保持中高速,产业结构迈向中高端,加快形成引领经济发展新常态的体制机制和发展方式,为我国经济增长和结构调整提供支撑,走出一条质量更高、效益更好、结构更优、核心竞争力更强的发展新路,努力率先全面建成小康社会,进而迈上率先基本实现社会主义现代化的新征程,在创新和发展中继续走在全国前列。 二、 液晶显示行业概况 液晶显示是光学、半导体、电子工程、化工和高分子材料等技术的集成产品,所需术涉及面广、技术含量较高,是典型的资金密集、技术密集和人力密集型产业。全球范围内看,液晶显示行业的发展经历了在美国研发成功,经过日本、韩国、中国台湾发展壮大,逐步向我国大陆产业转移的历程。目前我国已经成为全球最大的液晶显示产品生产国之一,液晶显示行业已经成为我国电子信息行业的重要组成部分。 三、 必要性分析 1、现有产能已无法满足公司业务发展需求 作为行业的领先企业,公司已建立良好的品牌形象和较高的市场知名度,产品销售形势良好,产销率超过 100%。预计未来几年公司的销售规模仍将保持快速增长。 随着业务发展,公司现有厂房、设备资源已不能满足不断增长的市场需求。公司通过优化生产流程、强化管理等手段,不断挖掘产能潜力,但仍难以从根本上缓解产能不足问题。通过本次项目的建设,公司将有效克服产能不足对公司发展的制约,为公司把握市场机遇奠定基础。 2、公司产品结构升级的需要 随着制造业智能化、自动化产业升级,公司产品的性能也需要不断优化升级。公司只有以技术创新和市场开发为驱动,不断研发新产品,提升产品精密化程度,将产品质量水平提升到同类产品的领先水准,提高生产的灵活性和适应性,契合关键零部件国产化的需求,才能在与国外企业的竞争中获得优势,保持公司在领域的国内领先地位。 四、 质量数据与分布规律 1、质量数据的基本概念 定量分析是现代质量管理中的基本特征之一。为了进行定量分析,就必须有数据。因此,在质量管理中要特别重视对数据的搜集、整理和分析工作。 质量数据是指某质量指标的质量特性值,在质量控制过程中,将检测和分析得到的质量特性值用数字记录下来,简称质量数据。由于质量一词含义丰富,既包括狭义的产品质量,也包括广义的工作质量,因而质量指标在企业中就多种多样,质量数据在企业中几乎无处不在。在质量数据统计分析中,从样本到总体的问题,即统计推断问题。所谓统计推断,就是根据抽样分布律和概率理论,由样本结果(统计数)来推论总体特征(参数)。因此,特别关注三项指标,一是数据的集中位置,二是数据的分散程度,三是数据的分布规律。 质量数据是指由个体产品质量特性值组成的样本(总体)的质量数据集,在统计上称为变量;个体产品质量特性值称变量值,根据质量数据的特点,可以将其分为计量值数据和计数值数据。 (1)计量值数据。计量值数据是指可以连续取值的数据,属于连续型变量。其特点是在任意两个数值之间都可以取精度较高一级的数值。它通常可以用仪器测量的连续性数据,如长度、重量、强度、时间、标高、位移等。 (2)计数值数据。计数值数据是指不能连续取值的,只能用自然数表示的数据,属于离散型变量。如合格品件数、废品数、错字数、质量缺陷点数等。计数值数据还可进一步划分为计件值数据和计点值数据。计件值数据是指按产品个数计数的数据,如合格品件数、废品件数等;计点值数据是指按点计数的数据,如缺陷、棉布上的疵点数、铸件上的砂眼数等。计数值是指具有离散分布性的数据。 2、质量数据的统计特征值 应用统计过程质量控制,其基本的做法就是用有限的样本去分析推断总体的特征。 过程的质量特性值是不断波动的。当搜集到的数据足够多时,就会发现一个现象,即所有数据都在一定范围内分散在一个中心值周围,越靠近中心值,数据越多;越偏离中心值,数据越少。这意味着数据的分散是有规律的,表现为数据的集中性。数据的分散性和集中性统称为数据的“统计规律性”。质量数据的集中趋势和离散程度反映了总体质量变化的内在规律性。 (1)质量数据的位置特征值。在分析质量数据的分布状态时,描述数据分布集中趋势主要有算术平均值、中位数等。 (2)数据的离散特征数。数据的分散程度在质量管理中就是质量特性值的波动性,反映过程能力。在分析数据的分布状态时,常被用于表示数据分布的离散程度的特征数,主要有极差、标准偏差等。 3、质量数据的分布规律 质量数据具有个体数值的波动性和总体分布的规律性。在统计过程质量控制中,各种统计技术的应用都是以质量数据的分布规律为依据进行的,其中最常用的有正态分布、二项式分布和泊松分布。 (1)正态分布。正态分布是一种最常见的连续性随机变量的概率分布。其特征是“钟”形曲线。 实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同范围内正态曲线下的面积可用公式计算。 轴与正态曲线之间的面积恒等于1。 (2)二项分布。二项分布是一种典型的离散性分布。 (3)泊松分布。泊松分布P(A)中只有一个参数入,它既是泊松分布的均值,也是泊松分布的方差。在实际事例中,当一个随机事件,例如,某电话交换台收到的呼叫来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白细胞等,以固定的平均瞬时速率入(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布。 五、 过程质量控制的特点 1、统计过程质量控制的基本概念 所谓控制是要以某个标准为基准,一旦偏离了这个基准,就要尽快加以纠正,使之保持这个基准。SPC(统计过程控制)就是以统计控制状态(稳态)作为基准的,这是一个非常重要的基本概念。 统计控制状态也称稳态,即过程中只有正常因素(随机因素)而无异常因素(系统因素)产生的变异的状态。 影响质量变异的原因包含正常因素(随机因素)和异常因素(系统因素)两大类。 正常因素的特点表现为:对质量变异的影响是微小的;在过程中是始终存在的;对质量变异的影响方向是不确定的。由正常因素所造成的质量变异称为正常质量波动,鉴于正常质量波动的原因难以查明、难以消除,所以常采取持续改进的方法。 异常因素的特点表现为:对质量变异的影响很大;在过程中时有时无;对质量变异的影响方向是确定的;异常因素是可以控制的(可以查明、可以消除)。 由于异常因素所造成的质量变异、质量波动,其原因可以查明、可以消除,所以采取的态度应该是“严加控制”。 正常质量波动表现出质量数据形成典型分布(在确定的生产条件下,质量数据的分布中心μ和标准偏差σ表现为确定的值)。异常质量波动表现出质量数据的典型分布遭到破坏,即质量数据的分布中心μ和标准偏差σ发生显著的变化。 统计过程控制就是要保持过程中只有正常因素起作用,控制异常因素的作用,使过程处于稳定受控状态。为了实现过程控制,必须采用科学的质量控制方法,如统计技术中分布状态、控制图,来捕捉过程中的异常先兆,并结合专业技术消除异常的质量波动。也就是说,统计过程控制是通过应用统计技术识别异常、消除异常,把不合格原因消灭于过程之中,达到预防不合格品产生的目的。 2、统计过程质量控制的步骤 质量控制大致可以分为7个步骤。 (1)选择控制对象。 (2)选择需要监测的质量特性值。 (3)确定规格标准,详细说明质量特性。 (4)选定能准确测量该特性值的监测仪表,或自制测试手段。 (5)进行实际测试并做好数据记录。 (6)分析实际与规格之间存在差异的原因。 (7)采取相应的纠正措施。 当采取相应的纠正措施后,仍然要对过程进行监测,将过程保持在新的控制水准上。一旦出现新的影响因子,还需要测量数据,分析原因,进行纠正,因此这7个步骤形成了一个封闭式流程,称为“反馈环”。这点和六西格玛质量突破模式的DMAIC有共通之处。 质量控制技术包括两大类:抽样检验和过程质量控制。 抽样检验通常是指生产前对原材料的检验或生产后对成品的检验,根据随机样本的质量检验结果决定是否接受该批原材料或产品,过程质量控制是指对生产过程中的产品随机样本进行检验,以判断该过程是否在预定标准内生产。抽样检验用于检验与评价,而过程质量控制应用于各种形式的生产过程。 因此,所谓统计过程质量控制,是利用数理统计的方法,对生产过程的各个阶段进行控制。从而达到改进与保证产品质量的目的。SPC强调全过程预防为主的思想。SPC不仅可用于制造过程,而且还可以用于服务过程,以改进和保证服务质量。SPC强调全员参加,人人有责,强调采用科学的方法来达到目的。 3、SPC的特点 许多质量管理技术是对已生产出来的产品进行分析、检验或评估,以找出提高产品质量的途径和方法,这是事后补救的方法。而统计过程控制与其他方法不同,它是在生产过程的各个阶段对产品质量进行适时的监控与评估,因而是一种预防性的方法,强调全员参与和整个过程的控制。因而其特点可总结为以下几点。 (1)产品质量的统计观点。应用数理统计方法分析和总结产品质量规律的观点是现代质量管理的基本观点之一。产品质量的统计观点包括以下两方面内容。 ①产品质量或过程质量特性值是波动的。在生产过程中,产品的质量特征值的波动是不可避免的,它是由设备(Machine)、材料(Material)、操作人(Man)、工艺(Method)、环境(Environment),即4MIE五个方面等基本因素的波动综合影响所致。由于产品在生产中不断受4MIE等质量因素的影响,而这些质量因素是在不断变化的,即使同一个工人,用同一批原材料在同一台机器设备上所生产出来的同一种零件,其质量特性值也不会完全一样。它们或多或少存在差异。这是质量变异的固有本性—波动性。产品公差制度的建立已表明产品质量是波动的。 ②产品质量的变异具有统计规律。即产品质量特性值的波动具有统计规律性。产品质量特性值的波动幅值及出现不同波动幅值的可能性大小,服从统计学的某些分布规律。在质量管理中,常用的分布主要有正态分布、二项分布、泊松分布等,而寿命特性值很多服从指数分布。知道了质量特性值服从什么分布,就可以利用这一点来保证与提高产品的质量。 因此,可以用统计理论来保证
点击显示更多内容>>
收藏
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号