资源描述
2023年中考数学模拟试卷 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题(共10小题,每小题3分,共30分) 1.下列方程中,没有实数根的是(  ) A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1 =0 D.x2﹣2x+2=0 2.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(    ) A.4 B.3 C.2 D. 3.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表. 节约用水量(单位:吨) 1 1.1 1.4 1 1.5 家庭数 4 6 5 3 1 这组数据的中位数和众数分别是( ) A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1. 4.的算术平方根为( ) A. B. C. D. 5.2017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为(  ) A.3382×108元 B.3.382×108元 C.338.2×109元 D.3.382×1011元 6.如图图形中,既是中心对称图形又是轴对称图形的是(  ) A. B. C. D. 7.如图,是半圆圆的直径,的两边分别交半圆于,则为的中点,已知,则( ) A. B. C. D. 8.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为(  ) A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣5 9.计算 的结果是( ) A.a2 B.-a2 C.a4 D.-a4 10.对于点A(x1,y1),B(x2,y2),定义一种运算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】 A.在同一条直线上 B.在同一条抛物线上 C.在同一反比例函数图象上 D.是同一个正方形的四个顶点 二、填空题(本大题共6个小题,每小题3分,共18分) 11.已知是方程组的解,则3a﹣b的算术平方根是_____. 12.如图,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_____. 13.已知△ABC中,∠C=90°,AB=9,,把△ABC 绕着点C旋转,使得点A落在点A′,点B落在点B′.若点A′在边AB上,则点B、B′的距离为_____. 14.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果. 1组 1~2组 1~3组 1~4组 1~5组 1~6组 1~7组 1~8组 盖面朝上次数 165 335 483 632 801 949 1122 1276 盖面朝上频率 0.550 0.558 0.537 0.527 0.534 0.527 0.534 0.532 根据实验,你认为这一型号的瓶盖盖面朝上的概率为____,理由是:____. 15.如图,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF.图中有全等三角形_____对,有面积相等但不全等的三角形_____对. 16.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________. 三、解答题(共8题,共72分) 17.(8分)如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C. 求m和b的值;直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动.设点P的运动时间为t秒. ①若点P在线段DA上,且△ACP的面积为10,求t的值; ②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由. 18.(8分)已知,抛物线的顶点为,它与轴交于点,(点在点左侧). ()求点、点的坐标; ()将这个抛物线的图象沿轴翻折,得到一个新抛物线,这个新抛物线与直线交于点. ①求证:点是这个新抛物线与直线的唯一交点; ②将新抛物线位于轴上方的部分记为,将图象以每秒个单位的速度向右平移,同时也将直线以每秒个单位的速度向上平移,记运动时间为,请直接写出图象与直线有公共点时运动时间的范围. 19.(8分)先化简,再求值:,其中的值从不等式组的整数解中选取. 20.(8分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长. 小何根据学习函数的经验,将此问题转化为函数问题解决. 小华假设AE的长度为xcm,线段DE的长度为ycm. (当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究. 下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数). (1)通过取点、画图、测量,得到了x与y的几组值,如下表: x/cm 0 1 2 3 4 5 6 7 8 y/cm 0 1.6 2.5 3.3 4.0 4.7     5.8 5.7 当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处: (2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象; (3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为   cm. 21.(8分)如图,在中,,以边为直径作⊙交边于点,过点作于点,、的延长线交于点. 求证:是⊙的切线;若,且,求⊙的半径与线段的长. 22.(10分)如图,在矩形ABCD中,对角线AC,BD相交于点O. (1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长. (2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论. 23.(12分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率. 24.甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.求甲组加工零件的数量y与时间x之间的函数关系式.求乙组加工零件总量a的值. 参考答案 一、选择题(共10小题,每小题3分,共30分) 1、D 【解析】 分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可. 【详解】 A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误; B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误; C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误; D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确. 故选D. 2、B 【解析】 首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案. 【详解】 把x=1代入得:y=1, ∴A(1,1),把x=2代入得:y=, ∴B(2, ), ∵AC//BD// y轴, ∴C(1,K),D(2,) ∴AC=k-1,BD=-, ∴S△OAC=(k-1)×1, S△ABD= (-)×1, 又∵△OAC与△ABD的面积之和为, ∴(k-1)×1+ (-)×1=,解得:k=3; 故答案为B. 【点睛】 :此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键. 3、D 【解析】 分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 详解:这组数据的中位数是; 这组数据的众数是1.1. 故选D. 点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数. 4、B 【解析】 分析:先求得的值,再继续求所求数的算术平方根即可. 详解:∵=2, 而2的算术平方根是, ∴的算术平方根是, 故选B. 点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误. 5、D 【解析】 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数. 【详解】 3382亿=338200000000=3.382×1. 故选:D. 【点睛】 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 6、A 【解析】 A. 是轴对称图形,是中心对称图形,故本选项正确; B. 是中心对称图,不是轴对称图形,故本选项错误; C. 不是中心对称图,是轴对称图形,故本选项错误; D. 不是轴对称图形,是中心对称图形,故本选项错误。 故选A. 7、C 【解析】 连接AE,只要证明△ABC是等腰三角形,AC=AB即可解决问题. 【详解】 解:如图,连接AE, ∵AB是直径, ∴∠AEB=90°,即AE⊥BC, ∵EB=EC, ∴AB=AC, ∴∠C=∠B, ∵∠BAC=50°, ∴∠C= (180°-50°)=65°, 故选:C. 【点睛】 本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题. 8、B 【解析】 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】 解:0.0
点击显示更多内容>>
收藏
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号