首页
搜索资源
资源分类
资源描述
2023年中考数学模拟试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为 A.1 B.3 C.0 D.1或3 2.解分式方程 ,分以下四步,其中,错误的一步是( ) A.方程两边分式的最简公分母是(x﹣1)(x+1) B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6 C.解这个整式方程,得x=1 D.原方程的解为x=1 3.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH┴AF与点H,那么CH的长是( ) A. B. C. D. 4.下列说法正确的是( ) A.对角线相等且互相垂直的四边形是菱形 B.对角线互相平分的四边形是正方形 C.对角线互相垂直的四边形是平行四边形 D.对角线相等且互相平分的四边形是矩形 5.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是( ) A. B. C. D. 6.下列说法: ① ; ②数轴上的点与实数成一一对应关系; ③﹣2是的平方根; ④任何实数不是有理数就是无理数; ⑤两个无理数的和还是无理数; ⑥无理数都是无限小数, 其中正确的个数有( ) A.2个 B.3个 C.4个 D.5个 7.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的( ) A.平均数 B.中位数 C.众数 D.方差 8.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( ) A. B. C. D. 9.如图所示的图形为四位同学画的数轴,其中正确的是( ) A. B. C. D. 10.下列事件中,属于必然事件的是( ) A.三角形的外心到三边的距离相等 B.某射击运动员射击一次,命中靶心 C.任意画一个三角形,其内角和是 180° D.抛一枚硬币,落地后正面朝上 11.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么( ) A.20° B.40° C.60° D.80° 12.绿豆在相同条件下的发芽试验,结果如下表所示: 每批粒数n 100 300 400 600 1000 2000 3000 发芽的粒数m 96 282 382 570 948 1904 2850 发芽的频率 0.960 0.940 0.955 0.950 0.948 0.952 0.950 下面有三个推断: ①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955; ②根据上表,估计绿豆发芽的概率是0.95; ③若n为4000,估计绿豆发芽的粒数大约为3800粒. 其中推断合理的是( ) A.① B.①② C.①③ D.②③ 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为___. 14.若向北走5km记作﹣5km,则+10km的含义是_____. 15.如图,二次函数y=ax2+bx+c(a≠0)的图象与轴相交于点A、B,若其对称轴为直线x=2,则OB–OA的值为_______. 16.如图,中,,则 __________. 17.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______. 18.标号分别为1,2,3,4,……,n的n张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n可以是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠1)中的x与y的部分对应值如表 x ﹣1 1 1 3 y ﹣1 3 5 3 下列结论: ①ac<1; ②当x>1时,y的值随x值的增大而减小. ③3是方程ax2+(b﹣1)x+c=1的一个根; ④当﹣1<x<3时,ax2+(b﹣1)x+c>1. 其中正确的结论是 . 20.(6分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α. (I)如图1,若α=30°,求点B′的坐标; (Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′; (Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可). 21.(6分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴、轴交于两点,过作垂直于轴于点.已知. (1)求一次函数和反比例函数的表达式; (2)观察图象:当时,比较. 22.(8分)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.求证:DE是⊙O的切线.求DE的长. 23.(8分) 已知AC,EC分别是四边形ABCD和EFCG的对角线,直线AE与直线BF交于点H (1)观察猜想 如图1,当四边形ABCD和EFCG均为正方形时,线段AE和BF的数量关系是 ;∠AHB= . (2)探究证明 如图2,当四边形ABCD和FFCG均为矩形,且∠ACB=∠ECF=30°时,(1)中的结论是否仍然成立,并说明理由. (3)拓展延伸 在(2)的条件下,若BC=9,FC=6,将矩形EFCG绕点C旋转,在整个旋转过程中,当A、E、F三点共线时,请直接写出点B到直线AE的距离. 24.(10分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米,). 25.(10分)雅安地震,某地驻军对道路进行清理.该地驻军在清理道路的工程中出色完成了任务.这是记者与驻军工程指挥部的一段对话:记者:你们是用9天完成4800米长的道路清理任务的? 指挥部:我们清理600米后,采用新的清理方式,这样每天清理长度是原来的2倍. 通过这段对话,请你求出该地驻军原来每天清理道路的米数. 26.(12分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB. (1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长. 27.(12分)计算: (1)(2)2﹣|﹣4|+3﹣1×6+20; (2). 参考答案 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B 【解析】 直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值. 【详解】 ∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一个根, ∴(m﹣1)+1+m2﹣5m+3=0, ∴m2﹣4m+3=0, ∴m=1或m=3, 但当m=1时方程的二次项系数为0, ∴m=3. 故答案选B. 【点睛】 本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算. 2、D 【解析】 先去分母解方程,再检验即可得出. 【详解】 方程无解,虽然化简求得,但是将代入原方程中,可发现和的分母都为零,即无意义,所以,即方程无解 【点睛】 本题考查了分式方程的求解与检验,在分式方程中,一般求得的x值都需要进行检验 3、D 【解析】 连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面积的两种表示法即可求得CH的长. 【详解】 如图,连接AC、CF, ∵正方形ABCD和正方形CEFG中,BC=1,CE=3, ∴AC= ,CF=3, ∠ACD=∠GCF=45°, ∴∠ACF=90°, 由勾股定理得,AF=, ∵CH⊥AF, ∴, 即, ∴CH=. 故选D. 【点睛】 本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键. 4、D 【解析】 分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答. 详解:A、对角线互相平分且垂直的四边形是菱形,故错误; B、四条边相等的四边形是菱形,故错误; C、对角线相互平分的四边形是平行四边形,故错误; D、对角线相等且相互平分的四边形是矩形,正确; 故选D. 点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理. 5、C 【解析】 根据反比例函数的图像性质进行判断. 【详解】 解:∵,电压为定值, ∴I关于R的函数是反比例函数,且图象在第一象限, 故选C. 【点睛】 本题考查反比例函数的图像,掌握图像性质是解题关键. 6、C 【解析】 根据平方根,数轴,有理数的分类逐一分析即可. 【详解】 ①∵,∴是错误的; ②数轴上的点与实数成一一对应关系,故说法正确; ③∵=4,故-2是 的平方根,故说法正确; ④任何实数不是有理数就是无理数,故说法正确; ⑤两个无理数的和还是无理数,如 和 是错误的; ⑥无理数都是无限小数,故说法正确; 故正确的是②③④⑥共4个; 故选C. 【点睛】 本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如 等,也有π这样的数. 7、B 【解析】 由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的 中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8 名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】 解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的 分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数. 故选B. 【点睛】 此题主要考查统计的有关知识,主要包括平均
点击显示更多内容>>
收藏
网站客服QQ:
2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号