资源描述
北师大版七年级上册数学全册教案(完整版)教学设计 1.1 生活中的立体图形(第1课时) 1、知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处. 2、能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类. 3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力. 教学重点:认识一些基本的几何体,并能描述这些几何体的特征. 教学难点:描述几何体的特征,对几何体进行分类. 一、设疑自探 1.创设情景,导入新课 在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体? 2.学生设疑 让学生自己先思考再提问. 3.教师整理并出示自探题目 ①生活常见的几何体有那些? ②这些几何体有什么特征 ③圆柱体与棱柱体有什么的相同之处和不同之处 ④圆柱体与圆锥体有什么的相同之处和不同之处 ⑤棱柱的分类 ⑥几何体的分类 4.学生自探(并有简明的自学方法指导) 举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体? 说说它们的区别. 二.解疑合探 1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探 2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类 2.活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。 三.质疑再探: 说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题). 1.1 生活中的立体图形(第2课时) 1、知识:认识点、线、面的运动后会产生什么的几何体. 2、能力:通过点、线、面的运动的认识几何体的产生什么. 3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力. 教学重点:几何体是什么运动形成的. 教学难点:对“面动成体”的理解. 一、设疑自探 1.创设情景,导入新课 我们上节课认识了生活中的基本几何体,它们是由什么形成的呢? 2.学生设疑 点动会生成什么几何体? 线动会生成什么几何体? 面动会生成什么几何体? 3.教师整理并出示自探题目 教师根据学生的設疑情况梳理、归纳、细化得出自探题目(自探要求) . 4.学生自探(讨论) 二.解疑合探 举例分析那些几何体由什么运动形成的? 那些图形运动可以形成什么几何体? 三.质疑再探: 说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题) 四.运用拓展: 1.引导学生自编习题。 2.教师出示运用拓展题。 (要根据教材内容尽可能要试题类型全面且有代表性) 3.课堂小结 4.作业布置 五、教后反思 1.2 展开与折叠 1.通过折叠棱柱,发展学生空间观念,积累数学活动经验. 2.了解棱柱的相关概念,认识棱柱的某些特性. 教学重点:棱柱的特性. 教学难点:某些平面图形是否可以折叠成棱柱的思索. 一、设疑自探 1.创设情景,导入新课 我们已经学过了一些几何体,它们是由什么组成的?它的展开图形是什么样?一个平面图形可以折叠成什么样的几何体呢? 2.让学生拿出各自制作的三棱柱,四棱柱,五棱柱,通过观察和测量回答: (1)三棱柱的上、下底面都一样吗?它们各有几条边?四棱柱,五棱柱呢? (2)三棱柱有几个侧面?侧面是什么图形?四棱柱,五棱柱呢? (3)这三种棱柱侧面的个数与地面多边形的边数有什么关系? (4)三棱柱有几条恻棱?它们的长度之间有什么关系?四棱柱,五棱柱呢? 结合同学们的回答,共同总结出棱柱的性质: 棱柱的所有侧棱都相等;棱柱的上、下底面是相同的图形;侧面都是长方形. 3.课堂练习:P11 随堂练习1题. 4.展示正六棱柱模型.(底面边长都是5厘米,侧棱长4厘米) 二.解疑合探 (1)这个六棱柱一共有多少个面?它们分别是什么形状?那些面的形状、面积完全相同? (2)这个六棱柱一共有多少条棱?它们的长度分别是多少? 先想一想,再折一折,哪些图形可以围成正方体?哪些图形不能围成正方体? 结合以上问题,全班进一步分组讨论: 你能否指出具有什么特征的平面图形可以折成正方体?什么样的图形不能? (教师参与小组讨论,并进行适当指导) 总结结论 凡符合以上基本图形或变式图形的平面图形都可以折叠成正方体. 三.质疑再探: 上例中为什么是旋转90度? 探索并思考:什么样的平面图形可以折叠成三棱柱,四棱柱,五棱柱? 进一步思考什么样的平面图形可以折叠成棱柱? 四.运用拓展: 1、课堂练习 P10 想一想 2、小结 ①.棱柱的相关概念及特征 ②.什么样的平面图形叠成三棱柱,四棱柱,五棱柱等. P9 习题1.3 每人用纸制作一个完整的正方体以备下节课使用. 1.3 截一个几何体 1、认知目标:通过用一个平面去截一个正方体的切截活动过程,掌握空间图形与截面的关系,发展学生的空间观念,发展几何直觉. 2、能力目标:通过学生参与对实物有限次的切截活动和用操作探索型课件进行的无限次的切截活动的过程,使学生经历观察、猜想、实际操作验证、推理等数学活动过程,发展学生的动手操作、自主探究、合作交流和分析归纳能力. 3、情感目标:通过以教师为主导,引导学生观察发现、大胆猜想、动手操作、自主探究、合作交流,使学生在合作学习中体验到:数学活动充满着探索和创造。使学生获得成功的体验,增强自信心,提高学习数学的兴趣. 教学重点:引导学生用一个平面去截一个正方体的切截活动,体会截面和几何体的关系,充分让学生动手操作、自主探索、合作交流. 教学难点:从切截活动中发现规律,并能用自己的语言来表达。能应用规律来解决问题. 一、设疑自探 1.创设情景,导入新课 复习面的分类和面面相交的结果. 集体回答或发表个人见解. 为理解截面的边数作铺垫. 2、学生探索 由实物引入截(切)面的意义.用教具演示,将一个几何体切开得到截(切)面,让学生观察这两个面的特点. 了解到这两个截面完全一样的. 自然过渡到用一个平面去截正方体. 问题的提出:“你注意到了吗?妈妈在将黄瓜切成一片片时,得到的截面是什么样的?…,如果用一个平面去截一个正方体得到的截面可又将是怎样的呢?分组讨论,比一比那一组的结论多”激发竞争意识. 实施“想—做—想”的学习策略,让学生先想一想,并把猜想的结果记录下来,的猜想. 培养学生的想象力. 分组实践操作:“与同伴交流,看看别人截处的面是什么?他为什么得到与你不同的截面?他是怎样得到的?你还能截得什么样的截面?”比一比那一组讨论的结果与实践一致的多.表扬表现好的.培养集体荣誉感. 分组通过实践操作证实小组的讨论的结果,发表、展示自己的研究成果.(由于时间关系,选择有代表性的小组展示) 培养学生的合作交流能力、对问题的探究能力及表达能力和竞争意识. 二、解疑合探 帮助学生完成由实际体验到空间想象的过渡,提高想象能力.并总结各种截面是如何截出来的,它们有什么规律. 观察,想象,思考截面的边那些面相交的来. 新问题:“刚才切、截一个正方体就得多个不同的截面,那么如果截一个圆柱体呢?或是截一个其它棱柱体呢?你又会得到一些什么样的截面?” 动手操作、探究、交流. 三.质疑再探 说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题) 练习、作业布置、解答课堂练习.学生能独立完成课堂练习. 1.4 从三个方向看物体的形状 1.经历"从不同方向观察物体"的活动过程,发展空间思维,能在与他人交流的过程中,合理清晰地表达自己的思维过程. 2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不一样的结果. 3.能识别简单物体的三视图,会画立方体及其简单组合体的三视图. 教学重点:识别简单物体的三视图,会画立方体及其简单组合体的三视图. 教学难点:画立方体及其简单组合体的三视图. 一、设疑自探 1、创设问题情境,从学生熟悉的古诗入手,引出课题. 横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中. 哪位同学能说说苏东坡是怎样观察庐山的吗? 这首诗隐含着一些数学知识.它教会了我们怎样观察物体,这也是我们这节课将要学习的内容——《从不同方向看》. 在此,我想先请同学们一起来做一个小实验. 2、观察实物、利用小实验,使学生初步体会从不同方向观察同一物体,可能看到不一样的结果. 水壶、杯子、乒乓球先用布盖好. 三名学生从不同角度进行观察,回答分别看到了什么? 思考:为什么三名学生看到的不一样? 二、解疑合探 1、观察几个简单几何体的组合,讨论得出"观察同一物体时,可能看到不同的图形"的结论. 拿出前两节课自制的模型(三棱柱).看三棱柱的侧面是什么图形?底面呢? 是不是同一物体,从不同方向看结果一定不一样呢? 由此,我们得到这样的结论:从不同方向观察同一物体时,可能看到不同的图形. 在几何中,我们把从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫俯视图. 2、讨论立方体及其简单组合的三视图.通过讨论,让学生能在与他人交流的过程中,合理清晰地表达自己的思维过程. 给定一个几何体。说说你从正面、左面、上面分别看到什么图形? 主视图、左视图、俯视图是相对于观察者而言的,相对于不同的观察者,其三视图可能不同. 假设从右下角往左上角的方向看是从正面看,则从左向看为从左看,站在观察主视图的位置从上往下看为从上面看. 请同学们思考一下从这三个方向看分别看到什么图形? (1)          (2)            (3) 图(1)是从左边看到的图,即左视图. 图(2)是从正面看到的图,即主视图. 图(3)是从上面看到的图,即俯视图. 刚才我们从不同方向观察了实物、几何体,还学习了简单几何体的三视图,为了巩固这些知识,下面我们来做几道练习. 三、质疑再探 说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题). 2.1 有理数 1.了解正数与负数是从实际需要中产生的,并会判断一个数是正数还是负数. 2.会用正、负数表示具有相反意义的量. 3.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力. 教学重点: 1.理解并掌握有理数的概念. 2.会用正、负数表示生活中具有相反意义的量. 教学难点:有理数的分类. 学情分析 认知基础:学生在小学已经学习并掌握了非负有理数的意义,对应用非负有理数表示生活中的量比较熟悉,并且已经熟练地掌握了非负有理数的四则运算法则及运算律,能规范条理地表述运算过程,初步具有了有条理地思考和书面表达能力,这些都为本章的学习奠定了基础. 活动经验基础:北师大版的小学数学重视学生的生活经验,密切数学与现实的联系,教材对重要的数学内容都是按照“问题情境——建立模型——解释与应用”的叙述方式编排的,学生在学习中掌握了基本的数学知识和方法,形成了良好的数学思维习惯和应用意识,有了一定的解决问题的能力,同时学生在研究具体问题的过程中自主地参与、探究和交流,具备了一定的主动参与、合作意识和初步的观察、分析、抽象概括的能力. 教学方法 创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索.通过小组交流合作的形式,构建以教师为主导,学生为主体自主探索的课堂学习环境,使学生在探索合作的过程中掌握知识,提高技能,形成自己的观点. 源:Zxxk.Com] 一、引入新课 设计说明[来源:学。科。网Z。X。X。K] 教材例题贴近学生生活实际,生动活泼,通过对该例设置问题串,由浅入深,引导学生在轻松熟悉的气氛中进行思考,既复习旧知,作好新知学习的铺垫,同时鼓励学生大胆想象,充分进行思考、交流. 阅读教材本节起始部分的内
点击显示更多内容>>
收藏
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号