2023年中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.在△ABC中,∠C=90°,sinA=,则tanB等于( )
A. B.
C. D.
2.已知反比例函数,下列结论不正确的是( )
A.图象必经过点(﹣1,2) B.y随x的增大而增大
C.图象在第二、四象限内 D.若,则
3.如图是一个放置在水平桌面的锥形瓶,它的俯视图是( )
A. B. C. D.
4.下列四个图形中既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
5.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好都是1.6米,方差分别是,,则在本次测试中,成绩更稳定的同学是( )
A.甲 B.乙 C.甲乙同样稳定 D.无法确定
6.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是( )
A.﹣2 B.0 C.1 D.4
7.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A.y=(x﹣2)2-2 B.y=(x﹣2)2+7
C.y=(x﹣2)2-5 D.y=(x﹣2)2+4
8.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是( )
A.1 B.2 C.3 D.4
9.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是( )
A. B. C. D.
10.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是( )
A. B. C. D.2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.点G是三角形ABC的重心,,,那么 =_____.
12.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是_____.
13..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.
14.中国古代的数学专著《九章算术》有方程组问题“五只雀,六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重.”设每只雀、燕的重量各为x两,y两,则根据题意,可得方程组为___.
15.抛物线 y=3x2﹣6x+a 与 x 轴只有一个公共点,则 a 的值为_____.
16.函数y=的自变量x的取值范围是_____.
三、解答题(共8题,共72分)
17.(8分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣相交于点A(m,2).
(1)求直线y=kx+m的表达式;
(2)直线y=kx+m与双曲线y=﹣的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.
18.(8分)如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).
(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;
(2)画出△ABC绕原点O旋转180°后得到的图形△A2B2C2,并写出B2点的坐标;
(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.
19.(8分)解不等式组并写出它的整数解.
20.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).
(Ⅰ)求二次函数的解析式及点A,B的坐标;
(Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;
(Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.
21.(8分)计算:﹣14﹣2×(﹣3)2+÷(﹣)如图,小林将矩形纸片ABCD沿折痕EF翻折,使点C、D分别落在点M、N的位置,发现∠EFM=2∠BFM,求∠EFC的度数.
22.(10分)如图,在正方形中,点是对角线上一个动点(不与点重合),连接过点作,交直线于点.作交直线于点,连接.
(1)由题意易知,,观察图,请猜想另外两组全等的三角形 ; ;
(2)求证:四边形是平行四边形;
(3)已知,的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.
23.(12分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:
根据以上统计图,解答下列问题:本次接受调查的市民共有 人;扇形统计图中,扇形B的圆心角度数是 ;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.
24.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故选B
法2,依题意可设a=4,b=3,则c=5,∵tanb=故选B
2、B
【解析】
试题分析:根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.
试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2);
B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;
C、命题正确;
D、命题正确.
故选B.
考点:反比例函数的性质
3、B
【解析】
根据俯视图是从上面看到的图形解答即可.
【详解】
锥形瓶从上面往下看看到的是两个同心圆.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
4、D
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、是轴对称图形,也是中心对称图形,故此选项正确.
故选D.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、A
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
∵S甲2=1.4,S乙2=2.5,
∴S甲2<S乙2,
∴甲、乙两名同学成绩更稳定的是甲;
故选A.
【点睛】
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
6、C
【解析】
【分析】首先确定原点位置,进而可得C点对应的数.
【详解】∵点A、B表示的数互为相反数,AB=6
∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,
又∵BC=2,点C在点B的左边,
∴点C对应的数是1,
故选C.
【点睛】本题主要考查了数轴,关键是正确确定原点位置.
7、D
【解析】
∵函数的图象过点A(1,m),B(4,n),
∴m==,n==3,
∴A(1,),B(4,3),
过A作AC∥x轴,交B′B的延长线于点C,则C(4,),
∴AC=4﹣1=3,
∵曲线段AB扫过的面积为9(图中的阴影部分),
∴AC•AA′=3AA′=9,
∴AA′=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,
∴新图象的函数表达式是.
故选D.
8、D
【解析】
由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
①∵抛物线对称轴是y轴的右侧,
∴ab<0,
∵与y轴交于负半轴,
∴c<0,
∴abc>0,
故①正确;
②∵a>0,x=﹣<1,
∴﹣b<2a,
∴2a+b>0,
故②正确;
③∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,
故③正确;
④当x=﹣1时,y>0,
∴a﹣b+c>0,
故④正确.
故选D.
【点睛】
本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.
9、C
【解析】
根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=- x2+x,对照四个选项即可得出.
【详解】
∵△ABC为等边三角形,
∴∠B=∠C=60°,BC=AB=a,PC=a-x.
∵∠APD=60°,∠B=60°,
∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
∴∠BAP=∠CPD,
∴△ABP∽△PCD,
∴,即,
∴y=- x2+x.
故选C.
【点睛】
考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.
10、B
【解析】
首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x的交点坐标,再求得交点与D之间的距离即可.
【详解】
AB的中点D的坐标是(4,-2),
∵C(a,-a)在一次函数y=-x上,
∴设过D且与直线y=-x垂直的直线的解析式是y=x+b,
把(4,-2)代入解析式得:4+b=-2,
解得:b=-1,
则函数解析式是y=x-1.
根据题意得:,
解得:,
则交点的坐标是(3,-3).
则这个圆的半径的最小值是:=.
故选:B