资源描述
2023年中考数学模拟试卷 注意事项: 1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。 2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。 4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(共10小题,每小题3分,共30分) 1.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是( ) A.(2,0) B.(3,0) C.(2,-1) D.(2,1) 2.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为 A. B.x(x+1)=1980 C.2x(x+1)=1980 D.x(x-1)=1980 3.如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为(  ) A.8073 B.8072 C.8071 D.8070 4.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为( ) A. B.2 C. D. 5.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度(  ) A.1 B.5 C.1或5 D.2或4 6.下列调查中,最适合采用普查方式的是(  ) A.对太原市民知晓“中国梦”内涵情况的调查 B.对全班同学1分钟仰卧起坐成绩的调查 C.对2018年央视春节联欢晚会收视率的调查 D.对2017年全国快递包裹产生的包装垃圾数量的调查 7.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是(  ) A. B. C. D. 8.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是( ) A.a<3 B.a>3 C.a<﹣3 D.a>﹣3 9.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于(  ) A.25:24 B.16:15 C.5:4 D.4:3 10.计算-5+1的结果为( ) A.-6 B.-4 C.4 D.6 二、填空题(本大题共6个小题,每小题3分,共18分) 11.反比例函数的图象经过点和,则 ______ . 12.如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米. 13.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____. 14.一个正n边形的中心角等于18°,那么n=_____. 15.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 16.已知y与x的函数满足下列条件:①它的图象经过(1,1)点;②当时,y随x的增大而减小.写出一个符合条件的函数:__________. 三、解答题(共8题,共72分) 17.(8分) (1)解方程: +=4 (2)解不等式组并把解集表示在数轴上:. 18.(8分)如图,在△ABC中,AB=AC,点,在边上,.求证:. 19.(8分)解下列不等式组: 20.(8分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积. 21.(8分)如图,在平面直角坐标系中,直线y=kx+3与轴、轴分别相交于点A、B,并与抛物线的对称轴交于点,抛物线的顶点是点. (1)求k和b的值; (2)点G是轴上一点,且以点、C、为顶点的三角形与△相似,求点G的坐标; (3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上.如果存在,直接写出点E的坐标,如果不存在,试说明理由. 22.(10分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点. 求反比例函数和一次函数的解析式;直接写出当x>0时,的解集.点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小. 23.(12分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=﹣2x+1. (1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式; (2)若要使每月的利润为40000元,销售单价应定为多少元? (3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少? 24.校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理; 看法 频数 频率 赞成 5 无所谓 0.1 反对 40 0.8 (1)本次调查共调查了   人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数. 参考答案 一、选择题(共10小题,每小题3分,共30分) 1、B 【解析】 试题分析:正方形ABCD绕点A顺时针方向旋转180°后,C点的对应点与C一定关于A对称,A是对称点连线的中点,据此即可求解. 试题解析:AC=2, 则正方形ABCD绕点A顺时针方向旋转180°后C的对应点设是C′,则AC′=AC=2, 则OC′=3, 故C′的坐标是(3,0). 故选B. 考点:坐标与图形变化-旋转. 2、D 【解析】 根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程. 【详解】 根据题意得:每人要赠送(x﹣1)张相片,有x个人, ∴全班共送:(x﹣1)x=1980, 故选D. 【点睛】 此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键. 3、A 【解析】 观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可. 【详解】 解:观察图形的变化可知: 第1个图案中涂有阴影的小正方形个数为:5=4×1+1; 第2个图案中涂有阴影的小正方形个数为:9=4×2+1; 第3个图案中涂有阴影的小正方形个数为:13=4×3+1; … 发现规律: 第n个图案中涂有阴影的小正方形个数为:4n+1; ∴第2018个图案中涂有阴影的小正方形个数为:4n+1=4×2018+1=1. 故选:A. 【点睛】 本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键. 4、C 【解析】 试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4 所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C. 考点:圆周角定理;锐角三角函数的定义. 5、C 【解析】 由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论. 【详解】 ∵点C是劣弧AB的中点, ∴OC垂直平分AB, ∴DA=DB=3, ∴OD=, 若△POC为直角三角形,只能是∠OPC=90°, 则△POD∽△CPD, ∴, ∴PD2=4×1=4, ∴PD=2, ∴PB=3﹣2=1, 根据对称性得, 当P在OC的左侧时,PB=3+2=5, ∴PB的长度为1或5. 故选C. 【点睛】 考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键. 6、B 【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似. 详解:A、调查范围广适合抽样调查,故A不符合题意; B、适合普查,故B符合题意; C、调查范围广适合抽样调查,故C不符合题意; D、调查范围广适合抽样调查,故D不符合题意; 故选:B. 点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 7、B 【解析】 首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程, 【详解】 设学校购买文学类图书平均每本书的价格是x元,可得: 故选B. 【点睛】 此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程. 8、B 【解析】 试题分析:当x=0时,y=-5;当x=1时,y=a-1,函数与x轴在0和1之间有一个交点,则a-1>0,解得:a>1. 考点:一元二次方程与函数 9、A 【解析】 先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答. 【详解】 ∵∠1=∠2,∠3=∠4, ∴∠2+∠3=90°, ∴∠HEF=90°, 同理四边形EFGH的其它内角都是90°, ∴四边形EFGH是矩形, ∴EH=FG(矩形的对边相等), 又∵∠1+∠4=90°,∠4+∠5=90°, ∴∠1=∠5(等量代换), 同理∠5=∠7=∠8, ∴∠1=∠8, ∴Rt△AHE≌Rt△CFG, ∴AH=CF=FN, 又∵HD=HN, ∴AD=HF, 在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF==5, 又∵HE•EF=HF•EM, ∴EM=, 又∵AE=EM=EB(折叠后A、B都落在M点上), ∴AB=2EM=, ∴AD:AB=5:==25:1. 故选A 【点睛】 本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等. 10、B 【解析】 根据有理数的加法法则计算即可. 【详解】
点击显示更多内容>>
收藏
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号