首页
搜索资源
资源分类
资源描述
城乡融合发展的科技成果公司 质量管理分析 目录 一、 公司基本情况 3 二、 过程质量控制的特点 4 三、 质量数据与分布规律 10 四、 过程能力的计算和评价 13 五、 过程能力 15 六、 质量改进的内涵 16 七、 质量改进工作的管理 26 八、 六西格玛管理的实施 29 九、 六西格玛管理的特点 33 十、 服务设计过程的质量管理 37 十一、 服务提供过程的质量管理 45 十二、 顾客满意质量管理 50 十三、 顾客满意的相关概念 56 十四、 产业环境分析 60 十五、 城乡融合的主要特征 60 十六、 必要性分析 61 十七、 发展规划 62 十八、 项目风险分析 65 十九、 项目风险对策 67 SWOT分析 69 (一)优势分析(S) 69 1、工艺技术优势 69 公司一直注重技术进步和工艺创新,通过引入国际先进的设备,不断加大自主技术研发和工艺改进力度,形成较强的工艺技术优势。公司根据客户受托产品的品种和特点,制定相应的工艺技术参数,以满足客户需求,已经积累了丰富的工艺技术。经过多年的技术改造和工艺研发,公司已经建立了丰富完整的产品生产线,配备了行业先进的设备,形成了门类齐全、品种丰富的工艺,可为客户提供一体化综合服务。 69 一、 公司基本情况 (一)公司简介 公司不断建设和完善企业信息化服务平台,实施“互联网+”企业专项行动,推广适合企业需求的信息化产品和服务,促进互联网和信息技术在企业经营管理各个环节中的应用,业通过信息化提高效率和效益。搭建信息化服务平台,培育产业链,打造创新链,提升价值链,促进带动产业链上下游企业协同发展。 公司满怀信心,发扬“正直、诚信、务实、创新”的企业精神和“追求卓越,回报社会” 的企业宗旨,以优良的产品服务、可靠的质量、一流的服务为客户提供更多更好的优质产品及服务。 (二)核心人员介绍 1、闫xx,中国国籍,无永久境外居留权,1970年出生,硕士研究生学历。2012年4月至今任xxx有限公司监事。2018年8月至今任公司独立董事。 2、韦xx,中国国籍,无永久境外居留权,1958年出生,本科学历,高级经济师职称。1994年6月至2002年6月任xxx有限公司董事长;2002年6月至2011年4月任xxx有限责任公司董事长;2016年11月至今任xxx有限公司董事、经理;2019年3月至今任公司董事。 3、雷xx,中国国籍,无永久境外居留权,1959年出生,大专学历,高级工程师职称。2003年2月至2004年7月在xxx股份有限公司兼任技术顾问;2004年8月至2011年3月任xxx有限责任公司总工程师。2018年3月至今任公司董事、副总经理、总工程师。 4、尹xx,1974年出生,研究生学历。2002年6月至2006年8月就职于xxx有限责任公司;2006年8月至2011年3月,任xxx有限责任公司销售部副经理。2011年3月至今历任公司监事、销售部副部长、部长;2019年8月至今任公司监事会主席。 5、秦xx,中国国籍,1977年出生,本科学历。2018年9月至今历任公司办公室主任,2017年8月至今任公司监事。 二、 过程质量控制的特点 1、统计过程质量控制的基本概念 所谓控制是要以某个标准为基准,一旦偏离了这个基准,就要尽快加以纠正,使之保持这个基准。SPC(统计过程控制)就是以统计控制状态(稳态)作为基准的,这是一个非常重要的基本概念。 统计控制状态也称稳态,即过程中只有正常因素(随机因素)而无异常因素(系统因素)产生的变异的状态。 影响质量变异的原因包含正常因素(随机因素)和异常因素(系统因素)两大类。 正常因素的特点表现为:对质量变异的影响是微小的;在过程中是始终存在的;对质量变异的影响方向是不确定的。由正常因素所造成的质量变异称为正常质量波动,鉴于正常质量波动的原因难以查明、难以消除,所以常采取持续改进的方法。 异常因素的特点表现为:对质量变异的影响很大;在过程中时有时无;对质量变异的影响方向是确定的;异常因素是可以控制的(可以查明、可以消除)。 由于异常因素所造成的质量变异、质量波动,其原因可以查明、可以消除,所以采取的态度应该是“严加控制”。 正常质量波动表现出质量数据形成典型分布(在确定的生产条件下,质量数据的分布中心μ和标准偏差σ表现为确定的值)。异常质量波动表现出质量数据的典型分布遭到破坏,即质量数据的分布中心μ和标准偏差σ发生显著的变化。 统计过程控制就是要保持过程中只有正常因素起作用,控制异常因素的作用,使过程处于稳定受控状态。为了实现过程控制,必须采用科学的质量控制方法,如统计技术中分布状态、控制图,来捕捉过程中的异常先兆,并结合专业技术消除异常的质量波动。也就是说,统计过程控制是通过应用统计技术识别异常、消除异常,把不合格原因消灭于过程之中,达到预防不合格品产生的目的。 2、统计过程质量控制的步骤 质量控制大致可以分为7个步骤。 (1)选择控制对象。 (2)选择需要监测的质量特性值。 (3)确定规格标准,详细说明质量特性。 (4)选定能准确测量该特性值的监测仪表,或自制测试手段。 (5)进行实际测试并做好数据记录。 (6)分析实际与规格之间存在差异的原因。 (7)采取相应的纠正措施。 当采取相应的纠正措施后,仍然要对过程进行监测,将过程保持在新的控制水准上。一旦出现新的影响因子,还需要测量数据,分析原因,进行纠正,因此这7个步骤形成了一个封闭式流程,称为“反馈环”。这点和六西格玛质量突破模式的DMAIC有共通之处。 质量控制技术包括两大类:抽样检验和过程质量控制。 抽样检验通常是指生产前对原材料的检验或生产后对成品的检验,根据随机样本的质量检验结果决定是否接受该批原材料或产品,过程质量控制是指对生产过程中的产品随机样本进行检验,以判断该过程是否在预定标准内生产。抽样检验用于检验与评价,而过程质量控制应用于各种形式的生产过程。 因此,所谓统计过程质量控制,是利用数理统计的方法,对生产过程的各个阶段进行控制。从而达到改进与保证产品质量的目的。SPC强调全过程预防为主的思想。SPC不仅可用于制造过程,而且还可以用于服务过程,以改进和保证服务质量。SPC强调全员参加,人人有责,强调采用科学的方法来达到目的。 3、SPC的特点 许多质量管理技术是对已生产出来的产品进行分析、检验或评估,以找出提高产品质量的途径和方法,这是事后补救的方法。而统计过程控制与其他方法不同,它是在生产过程的各个阶段对产品质量进行适时的监控与评估,因而是一种预防性的方法,强调全员参与和整个过程的控制。因而其特点可总结为以下几点。 (1)产品质量的统计观点。应用数理统计方法分析和总结产品质量规律的观点是现代质量管理的基本观点之一。产品质量的统计观点包括以下两方面内容。 ①产品质量或过程质量特性值是波动的。在生产过程中,产品的质量特征值的波动是不可避免的,它是由设备(Machine)、材料(Material)、操作人(Man)、工艺(Method)、环境(Environment),即4MIE五个方面等基本因素的波动综合影响所致。由于产品在生产中不断受4MIE等质量因素的影响,而这些质量因素是在不断变化的,即使同一个工人,用同一批原材料在同一台机器设备上所生产出来的同一种零件,其质量特性值也不会完全一样。它们或多或少存在差异。这是质量变异的固有本性—波动性。产品公差制度的建立已表明产品质量是波动的。 ②产品质量的变异具有统计规律。即产品质量特性值的波动具有统计规律性。产品质量特性值的波动幅值及出现不同波动幅值的可能性大小,服从统计学的某些分布规律。在质量管理中,常用的分布主要有正态分布、二项分布、泊松分布等,而寿命特性值很多服从指数分布。知道了质量特性值服从什么分布,就可以利用这一点来保证与提高产品的质量。 因此,可以用统计理论来保证与改进产品质量。统计过程质量控制就是在这种思想指导下产生的。 (2)发现及纠正异常因素。从对质量的影响大小来看,质量因素的波动分为两种:正常波动和异常波动,或称为偶然误差(偶然因素)和系统误差(异常因素)。产生质量波动的因素分为随机因素和异常因素两大类。随机因素对产品质量和过程的影响可用质量改进的技术与方法进行识别、减小和降低;异常因素对产品质量的影响很大,在生产过程中应利用SPC控制技术及时分析,并纠正和消除。因此,在正常生产过程中一旦发现异常因素,则应尽快地把它找出来,并采取措施将其消除。这就是抓主要矛盾。SPC控制技术是发现及纠正异常因素的科学工具。 (3)稳定状态是过程质量控制追求的目标。在生产过程中,只有随机因素而没有异常因素的状态称为稳定状态,也叫统计控制状态。在统计控制状态下,对产品质量的控制不仅可靠而且经济,所产生的不合格品最少。因此,稳态生产是过程控制所追求的目标。 (4)预防为主是统计过程控制的重要原则。质量是制造出来的,不是检验出来的。统计过程控制的目的是在生产过程中实施一种避免浪费,不生产废品的预防策略,发挥质量管理人员、技术人员、现场操作工人的共同作用,从上、下工序过程的相互联系中进行分析,实现“预防为主”的原则,在生产过程中保证产品质量。 现代质量管理强调以预防为主,要求在质量形成的整个生产过程中,尽量少出或不出不合格品,这就需要研究两个问题:一是如何使生产过程具有保证不出不合格品的能力;二是如何把这种保证不出不合格品的能力保持下去,一旦这种保证质量的能力不能维持下去,应能尽早发现,及时得到情报,查明原因,采取措施,使这种保证质量的能力继续稳定下来,保持下去,真正做到防患于未然。前一个问题一般称为生产过程的工序能力分析,后一个问题一般称为生产过程的控制。 三、 质量数据与分布规律 1、质量数据的基本概念 定量分析是现代质量管理中的基本特征之一。为了进行定量分析,就必须有数据。因此,在质量管理中要特别重视对数据的搜集、整理和分析工作。 质量数据是指某质量指标的质量特性值,在质量控制过程中,将检测和分析得到的质量特性值用数字记录下来,简称质量数据。由于质量一词含义丰富,既包括狭义的产品质量,也包括广义的工作质量,因而质量指标在企业中就多种多样,质量数据在企业中几乎无处不在。在质量数据统计分析中,从样本到总体的问题,即统计推断问题。所谓统计推断,就是根据抽样分布律和概率理论,由样本结果(统计数)来推论总体特征(参数)。因此,特别关注三项指标,一是数据的集中位置,二是数据的分散程度,三是数据的分布规律。 质量数据是指由个体产品质量特性值组成的样本(总体)的质量数据集,在统计上称为变量;个体产品质量特性值称变量值,根据质量数据的特点,可以将其分为计量值数据和计数值数据。 (1)计量值数据。计量值数据是指可以连续取值的数据,属于连续型变量。其特点是在任意两个数值之间都可以取精度较高一级的数值。它通常可以用仪器测量的连续性数据,如长度、重量、强度、时间、标高、位移等。 (2)计数值数据。计数值数据是指不能连续取值的,只能用自然数表示的数据,属于离散型变量。如合格品件数、废品数、错字数、质量缺陷点数等。计数值数据还可进一步划分为计件值数据和计点值数据。计件值数据是指按产品个数计数的数据,如合格品件数、废品件数等;计点值数据是指按点计数的数据,如缺陷、棉布上的疵点数、铸件上的砂眼数等。计数值是指具有离散分布性的数据。 2、质量数据的统计特征值 应用统计过程质量控制,其基本的做法就是用有限的样本去分析推断总体的特征。 过程的质量特性值是不断波动的。当搜集到的数据足够多时,就会发现一个现象,即所有数据都在一定范围内分散在一个中心值周围,越靠近中心值,数据越多;越偏离中心值,数据越少。这意味着数据的分散是有规律的,表现为数据的集中性。数据的分散性和集中性统称为数据的“统计规律性”。质量数据的集中趋势和离散程度反映了总体质量变化的内在规律性。 (1)质量数据的
点击显示更多内容>>
收藏
网站客服QQ:
2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号