资源预览内容
第1页 / 共15页
第2页 / 共15页
第3页 / 共15页
第4页 / 共15页
第5页 / 共15页
第6页 / 共15页
第7页 / 共15页
第8页 / 共15页
第9页 / 共15页
第10页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
射频与透波防护器件产业可行性研究面向行业企业开展宣传培训工作,推动云计算服务商与行业企业深入合作,利用云上的软件应用和数据服务提高企业管理效率,组织开展典型标杆应用案例遴选。推动中小企业业务向云端迁移,到2020年,实现中小企业应用云服务快速形成信息化能力,形成100个企业上云典型应用案例。一、 搭建产业合作平台充分发挥协会、联盟等行业组织的桥梁纽带作用,整合骨干企业、高等院校、科研院所等各界资源,推动产、学、研间开展深入合作,在信息消费标准制定、技术验证、产品孵化、国际拓展等方面,创新管理和运作机制,打造多方协作、互利共赢的产业生态。二、 通信设备行业的技术发展情况和未来发展趋势(一)通信设备技术的整体发展历史:由分裂走向统一1、通信设备行业1G时代:各国各自研制自己的移动通信系统1973年,摩托罗拉研发出了世界第一台手机;1976年,ITU批准了800/900MHz频段用于移动电话的频率分配方案。1978年底,美国贝尔实验室研发成功了世界第一套移动通信系统AMPS(AdvancedMobilePhoneSystem)并于1983年开始正式商业运行,开启了1G时代;随着AMPS的面世,欧洲各国也纷纷建立齐了自己的第一代移动通信系统,包括北欧的NMT(NordicMobileTelephone)、前联邦德国的C-Netz和英国的TACS(TotalAccessCommunicationsSystem)等。作为最早面世的移动通信系统,AMPS受到了广泛的欢迎,在超过70个国家运行,是1G时代最广泛使用的通信技术标准。2、通信设备行业2G时代:欧洲各国开始联合,欧洲VS高通的通信标准格局形成1982年,为研发、设计一个可以泛欧洲使用的移动通信系统,欧洲邮电管理委员会设立了GSM(法语GroupeSpcialMobile,移动通信专家组,其标准化的职能后转移)。1986年,为与美国在通信领域竞争,建立一个更先进、更广泛使用的泛欧通信技术标准,欧洲委员会(EuropeanCommission)于1986年开始对美国通信行业的情况进行了考察,并于1987年第一次公布了设立一个通信技术标准协会的设想。1987年,德国、比利时、丹麦、西班牙、芬兰、法国、爱尔兰、意大利、挪威、荷兰、葡萄牙、英国、瑞典共同签署了一份备忘录,同意在1991年前建立一个泛欧洲的、基于数字信号的通信系统,并委托GSM承担该任务。1988年,欧洲邮电管理委员会设立了ETSI(EuropeanTelecommunicationsStandardsInstitute,欧洲电信标准协会)。1989年,欧洲邮电管理委员会将GSM的职能转移给了ETSI,同年,新一代的泛欧洲通信系统标准被确定,即GSM(GlobalSystemforMobilecommunications)标准,欧洲的通信技术标准得到了统一。在欧洲大力发展GSM标准的同时,美国的高通也在布局新一代的通信技术,与基于TDMA(时分多址)技术的GSM标准不同,高通采用CDMA(码分多址)技术建立了自己的通信技术标准IS-95,并于1993年被美国电信行业协会(TelecommunicationsIndustryAssociation)确立为2G标准,相关网络系统后续在中国香港、韩国等多个地区部署,在全球形成欧洲的GSM和高通的CDMA两大2G标准竞争的格局。3、通信设备行业3G时代:更多国家、组织积极参与通信技术标准的设立1985年,联合国下属的ITU(InternationalTelecommunicationUnion,国际电信联盟)提出建立新的通信技术规范,即FPLMTS(FuturePublicLandMobileTelecommunicationsSystem,未来公共陆地移动通信系统)。由于GSM等2G网络的部署,ITU的该计划暂时搁置(FPLMTS后被改名为IMT-2000)。1987年,一项旨在研究一种在革命性的通信系统的研究在英国剑桥开展,研究员们将这项技术称作UMTS(UniversalMobileTelecommunicationsSystem),该研究得到了欧洲委员会和爱立信、诺基亚等厂商的资助。上世纪90年代初,越来越多的SDO(StandardsDevelopingOrganization,标准化组织)和通信厂商意识到全球通行的通信技术标准的意义,包括ESTI、日本的ARIB等标准化组织以及爱立信、诺基亚、三星都开始进行研究。为了能够采用单一标准,ITU要求每个地区的SDO和厂商提交能够满足IMT-2000性能要求的无线电传输技术的提案。1992年,UMTS的研究取得了阶段性成果,但参与UMTS研究的各方对UMTS的无线电传输部分选择ATDMA技术还是WCDMA技术存在争议。1996年,在欧洲委员会的促进下,爱立信、诺基亚等厂商,法国电信、Orange等运营商以及标准化组织ETSI共同建立了UMTS论坛,以推动UMTS的产业化发展。其后,日本加入了欧洲阵营,UMTS确定以WCDMA技术作为无线电传输部分的技术。1996年-1998年间,各大SDO和相关厂商提交了17个提案,包括欧洲和日本SDO联合主张的WCDMA(UMTS),高通和三星为主的厂商联合主张CDMA2000和中国主张的TD-SCDMA。1998年,为支持UMTS成为世界标准,以ESTI为核心的组织、厂商建立了3GPP(3rdGenerationPartnershipProject,第三代合作计划);同年,支持CDMA2000的以高通为核心的厂商、组织建立了3GPP2、3GPP和3GPP2都宣称为ITU的IMT-2000项目服务。1999年,为推动TD-SCDMA的普及,中国的标准化组织CCSA同时加入了3GPP和3GPP2。中国主张的TD-SCDMA后来成为UMTS的一部分,与WCDMA作为UMTS的两个不同版本。2000年,经ITU确认(ITU-RM1457Recommendation),WCDMA、CDMA2000和TD-SCDMA被确立为3G(IMT-2000)的标准。4、通信设备行业4G时代:高通放弃主导标准,IT厂商竞争失败,技术标准趋向统一在3G时代,为收回对UMTS研究的资助,欧洲各国采用了最大化频谱使用权拍卖价格的政策,使运营商背负了较大的投入成本,因此运营商在短期内无法承受再一次革命性的通信技术更新。在这种商业背景下,各大标准化组织和厂商对于通信技术的研究方向主要是在现有体系下演进,3GPP和3GPP2两大组织分别在其原支持的UMTS、CDMA2000的基础上推出了LTE(LongTermEvolution)和UMB(UltraMobileBroadband)。在通信行业组织演进技术的同时,主要由IT厂商和工程师组成的IEEE(InstituteofElectricalandElectronicsEngineers,电机电子工程师协会)也升级了其负责制订的Wi-Fi技术标准;升级后的IEEE80216e及以后版本Wi-Fi技术标准可以支持移动互联网功能,开始与通信行业组织与厂商进行竞争。2008年,ITU定义了4G(IMTAdvanced)网络技术的性能指标,要求相关SDO和厂商向ITU提交4G技术的提案。同年,高通宣布停止推广UMB,加入LTE阵营。2009年,3GPP和IEEE分别向ITU提交了LTEAdvanced和WiMAXrel20(IEEE80216m)作为4G(IMTAdvanced)技术标准的提案。2011年,经ITU批准,LTEAdvanced和IEEE80216m都被确认为4G的技术标准。2012年,IEEE公布了WiMAXrel21,由于WiMAXrel21不兼容以前的版本,众多运营商和厂商转向LTEAdvanced,LTEAdvanced成为唯一主流的4G通信技术标准。5、通信设备行业5G时代:第一次尝试全球统一标准,标准分批冻结以往通信技术标准的不统一为各大软硬件厂商、运营商都带来了很大的不便,因此在5G时代统一全球标准成为了通信行业绝大部分参与者的共识。经过3G、4G时代标准制定工作的发展,由ITU发布定义和指标需求,由各大SDO和厂商进行研究,再在3GPP框架内进行讨论、谈判、确认,最后由3GPP向ITU进行提案成为了通信行业普遍认可的确认通信技术标准的方式。2015年,ITU公布的ITU-RM2083文件定义了5G(IMT-2020)技术的应用场景和技术指标,根据ITU的定义,5G的三大典型应用场景包括:eMBB(EnhancedMobileBroadband,增强型移动宽带),主要应用场景包括3D/超高清视频、VR/AR、云存取、高速移动上网等需要大流量移动宽带的场景;URLLC(UltraReliable&LowLatencyCommunication,高可靠低时延通信),主要应用场景包括无人驾驶/智能驾驶、工业互联网等要求极低时延和高可靠性的场景;mMTC(MassiveMachineTypeCommunication,大规模机器通信),主要场景包括车联网、智能物流、智能资产管理等需要大规模数据连接的场景。根据3GPP的规划,5G标准分为R15、R16和R17,目前R15、R16标准已经冻结。R15版本标准已经能够初步支持ITU定义的5G应用场景中eMBB和URLLC两大场景,因此R15的冻结意味着面向5G规模商用的网络设备、芯片、手机以及各种多样化的智能硬件可以开始生产,部分运营商已经可以开始5G网络的部署和运营;R16的冻结标志着5G网络具备真正的系统级低时延高可靠性能力,并实现了网络切片应用背景下的4G5G互操作问题,以满足智慧车联网、工业互联网等行业应用。根据3GPP的时间表,R17版本标准预计于2022年6月冻结。(二)5G基站设备的变化:覆盖范围更小、集成程度更高、发热/能耗更大1、因频段原因,相同情况下5G基站的覆盖范围更小在相同情况下,无线电波的波长越长(频率越低),其传播距离越远。基于历史原因,各国低频段的频谱资源大部分分配给力其他网络(2G网络主要运行在09Ghz附近,3G网络主要运行在18Ghz附近,4G网络主要运行在23-26Ghz附近)和其他无线电波服务(比如广播电视),考虑到频谱资源的限制,大部分5G网络运行在比以往网络更高的频段上,因此在相同条线下,5G基站的覆盖范围一般较4G网络更小。除以上因素外,因现实中不存在理想的传播条件,基站的覆盖范围还要考虑到各种损耗。由于无线电波自身的性质,5G高频信号的传输,尤其是毫米波段的5G信号会受到空气中的氧气、水蒸气等分子的明显影响,包括对无线电波能量的吸收、使无线电波散射等,越高频率的无线电波受到的影响越大。除了在空气中传播受到影响以外,越高频率的无线电波在穿透物体时的衰减也越大,以穿过建筑外墙为例,频率越高的无线电波受到的衰减影响越大。2、为增强覆盖、提升网络性能,5G基站大量使用MIMO技术为增大5G网络的覆盖面积,实现5G技术标准所要求的性能,5G基站设备将大量使用MIMO(MultiInputMultioutput,多进多出)技术。MIMO技术是4G时代发展出的一种关键技术,其基本原理是在发送端和接收端部署多根天线,通过多根天线配合提供分集增益和赋形增益,以提升网速和覆盖率面积。分集增益是指通过多天线同时收发信号,在单位时间内传输更多的数据,提高数据的接收成功率。赋形增益是指利用波的干涉原理,增强部分波束,从而增强波束的传播能力。在3G,4G时代,基站设备主要由BBU(BuildingBasebandUnit,负责基带信号调制)、RRU(RemoteRadioUnit,负责数字信号和模拟信号转换以及模拟信号的处理)和天线(负责收发承载模拟信号的无线电波)组成,其中RRU以往通过馈线和天线进行连接。由于5G的基站天线将普遍使用m
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号