资源预览内容
第1页 / 共20页
第2页 / 共20页
第3页 / 共20页
第4页 / 共20页
第5页 / 共20页
第6页 / 共20页
第7页 / 共20页
第8页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
皖西高中教学联盟2024届高三第二学期调研考试(数学试题)试题注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1 “且”是“”的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件2已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是( )ABCD3已知函数是上的偶函数,且当时,函数是单调递减函数,则,的大小关系是( )ABCD4设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为( )ABCD5在我国传统文化“五行”中,有“金、木、水、火、土”五个物质类别,在五者之间,有一种“相生”的关系,具体是:金生水、水生木、木生火、火生土、土生金.从五行中任取两个,这二者具有相生关系的概率是( )A0.2B0.5C0.4D0.86某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为( )ABCD7已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为( )A2B3C4D8一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( )ABCD9设集合、是全集的两个子集,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10已知在中,角的对边分别为,若函数存在极值,则角的取值范围是( )ABCD11如图,内接于圆,是圆的直径,则三棱锥体积的最大值为( )ABCD12设i是虚数单位,若复数是纯虚数,则a的值为( )AB3C1D二、填空题:本题共4小题,每小题5分,共20分。13已知函数在上仅有2个零点,设,则在区间上的取值范围为_14一个村子里一共有个人,其中一个人是谣言制造者,他编造了一条谣言并告诉了另一个人,这个人又把谣言告诉了第三个人,如此等等在每一次谣言传播时,谣言的接受者都是在其余个村民中随机挑选的,当谣言传播次之后,还没有回到最初的造谣者的概率是_15展开式中的系数为_.16已知点是抛物线的焦点,是该抛物线上的两点,若,则线段中点的纵坐标为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)中的内角,的对边分别是,若,.(1)求;(2)若,点为边上一点,且,求的面积.18(12分)已知数列是各项均为正数的等比数列,数列为等差数列,且,.(1)求数列与的通项公式;(2)求数列的前项和;(3)设为数列的前项和,若对于任意,有,求实数的值.19(12分)已知数列中,a1=1,其前n项和为,且满足(1)求数列的通项公式;(2)记,若数列为递增数列,求的取值范围20(12分)近年来,随着“雾霾”天出现的越来越频繁,很多人为了自己的健康,外出时选择戴口罩,在一项对人们雾霾天外出时是否戴口罩的调查中,共调查了人,其中女性人,男性人,并根据统计数据画出等高条形图如图所示:(1)利用图形判断性别与雾霾天外出戴口罩是否有关系并说明理由;(2)根据统计数据建立一个列联表;(3)能否在犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩的关系.附:21(12分)在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:分数不少于120分分数不足120分合计线上学习时间不少于5小时419线上学习时间不足5小时合计45(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.(下面的临界值表供参考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(参考公式其中)22(10分)已知函数,且.(1)求的解析式;(2)已知,若对任意的,总存在,使得成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解题分析】画出“,所表示的平面区域,即可进行判断.【题目详解】如图,“且”表示的区域是如图所示的正方形,记为集合P,“”表示的区域是单位圆及其内部,记为集合Q,显然是的真子集,所以答案是充分非必要条件,故选:.【题目点拨】本题考查了不等式表示的平面区域问题,考查命题的充分条件和必要条件的判断,难度较易.2A【解题分析】结合已知可知,可求,进而可求,代入,结合,可求,即可判断【题目详解】图象上相邻两个极值点,满足,即,且,当时,为函数的一个极小值点,而故选:【题目点拨】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用3D【解题分析】利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【题目详解】因为,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【题目点拨】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.4B【解题分析】由圆过原点,知中有一点与原点重合,作出图形,由,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积【题目详解】由题意圆过原点,所以原点是圆与抛物线的一个交点,不妨设为,如图,由于,点坐标为,代入抛物线方程得,故选:B.【题目点拨】本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解5B【解题分析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【题目详解】从五行中任取两个,所有可能的方法为:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共种,其中由相生关系的有金水、木水、木火、火土、金土,共种,所以所求的概率为.故选:B【题目点拨】本小题主要考查古典概型的计算,属于基础题.6A【解题分析】由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.【题目详解】椭圆的离心率:,( c为半焦距; a为长半轴),设卫星近地点,远地点离地面距离分别为r,n,如图:则所以,故选:A【题目点拨】本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题.7B【解题分析】因为将函数(,)的图象向右平移个单位长度后得到函数的图象,可得,结合已知,即可求得答案.【题目详解】将函数(,)的图象向右平移个单位长度后得到函数的图象,又和的图象都关于对称,由,得,即,又,.故选:B.【题目点拨】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.8D【解题分析】设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【题目详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【题目点拨】本题考查圆锥的表面积和球的表面积公式,属于基础题.9C【解题分析】作出韦恩图,数形结合,即可得出结论.【题目详解】如图所示,同时.故选:C.【题目点拨】本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.10C【解题分析】求出导函数,由有不等的两实根,即可得不等关系,然后由余弦定理可及余弦函数性质可得结论【题目详解】,.若存在极值,则,又.又故选:C【题目点拨】本题考查导数与极值,考查余弦定理掌握极值存在的条件是解题关键11B【解题分析】根据已知证明平面,只要设,则,从而可得体积,利用基本不等式可得最大值【题目详解】因为,所以四边形为平行四边形.又因为平面,平面,所以平面,所以平面.在直角三角形中,设,则,所以,所以.又因为,当且仅当,即时等号成立,所以.故选:B【题目点拨】本题考查求棱锥体积的最大值解题方法是:首先证明线面垂直同,得棱锥的高,然后设出底面三角形一边长为,用建立体积与边长的函数关系,由基本不等式得最值,或由函数的性质得最值12D【解题分析】整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【题目详解】由题,因为纯虚数,所以,则,故选:D【题目点拨】本题考查已知复数的类型求参数范围,考查复数的除法运算.二、填空题:本题共4小题,每小题5分,共20分。13【解题分析】先根据零点个数求解出的值,然后得到的解析式,采用换元法求解在上的值域即可.【题目详解】因为在上有两个零点,所以,所以,所以且,所以,所以,所以,令,所以,所以,因为,所以,所以,所以,所以 ,所以.故答案为:.【题目点拨】本题考查三角函数图象与性质的综合,其中涉及到换元法求解三角函数值域的问题,难度较难. 对形如的函数的值域求解,关键是采用换元法令,然后根据,将问题转化为关于的函数的值域,同时要注意新元的范
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号