资源预览内容
第1页 / 共18页
第2页 / 共18页
第3页 / 共18页
第4页 / 共18页
第5页 / 共18页
第6页 / 共18页
第7页 / 共18页
第8页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
甘肃省定西市陇西二中2024届高三3月开学考试数学试题注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为( )ABC2D42如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点( )A向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变B向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变D向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变3在直角中,若,则( )ABCD4已知集合,若,则( )ABCD5若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ). A6500元B7000元C7500元D8000元6已知复数满足,则的共轭复数是( )ABCD7若为虚数单位,则复数,则在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限8阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )AB6CD9蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为的正方形模型内均匀投点,落入阴影部分的概率为,则圆周率( )ABCD10已知函数,其中,若恒成立,则函数的单调递增区间为( )ABCD11一个盒子里有4个分别标有号码为1,2,3,4的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是4的取法有( )A17种B27种C37种D47种12已知m,n为异面直线,m平面,n平面,直线l满足l m,l n,则( )A且B且C与相交,且交线垂直于D与相交,且交线平行于二、填空题:本题共4小题,每小题5分,共20分。13的展开式中的系数为_.14边长为2的菱形中,与交于点O,E是线段的中点,的延长线与相交于点F,若,则_.15若展开式中的常数项为240,则实数的值为_.16已知,则_.(填“”或“=”或“”).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在本题中,我们把具体如下性质的函数叫做区间上的闭函数:的定义域和值域都是;在上是增函数或者减函数.(1)若在区间上是闭函数,求常数的值;(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.18(12分)已知函数与的图象关于直线对称. (为自然对数的底数)(1)若的图象在点处的切线经过点,求的值;(2)若不等式恒成立,求正整数的最小值.19(12分)在中,角所对的边分别是,且.(1)求角的大小;(2)若,求边长.20(12分)在,这三个条件中任选一个,补充在下面问题中.若问题中的正整数存在,求的值;若不存在,说明理由.设正数等比数列的前项和为,是等差数列,_,是否存在正整数,使得成立?21(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立关于的回归方程;(3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为,22(10分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为()求椭圆的离心率;()如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解题分析】由倾斜角的余弦值,求出正切值,即的关系,求出双曲线的离心率.【题目详解】解:设双曲线的半个焦距为,由题意又,则,所以离心率,故选:A.【题目点拨】本题考查双曲线的简单几何性质,属于基础题2A【解题分析】由函数的最大值求出,根据周期求出,由五点画法中的点坐标求出,进而求出的解析式,与对比结合坐标变换关系,即可求出结论.【题目详解】由图可知,又,又,为了得到这个函数的图象,只需将的图象上的所有向左平移个长度单位,得到的图象,再将的图象上各点的横坐标变为原来的(纵坐标不变)即可.故选:A【题目点拨】本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题.3C【解题分析】在直角三角形ABC中,求得 ,再由向量的加减运算,运用平面向量基本定理,结合向量数量积的定义和性质:向量的平方即为模的平方,化简计算即可得到所求值【题目详解】在直角中,若,则 故选C.【题目点拨】本题考查向量的加减运算和数量积的定义和性质,主要是向量的平方即为模的平方,考查运算能力,属于中档题4A【解题分析】由,得,代入集合B即可得.【题目详解】,即:,故选:A【题目点拨】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.5D【解题分析】设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可【题目详解】设目前该教师的退休金为x元,则由题意得:600015%x10%1解得x2故选D【题目点拨】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题6B【解题分析】根据复数的除法运算法则和共轭复数的定义直接求解即可.【题目详解】由,得,所以故选:B【题目点拨】本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题.7B【解题分析】首先根据特殊角的三角函数值将复数化为,求出,再利用复数的几何意义即可求解.【题目详解】,则在复平面内对应的点的坐标为,位于第二象限.故选:B【题目点拨】本题考查了复数的几何意义、共轭复数的概念、特殊角的三角函数值,属于基础题.8D【解题分析】用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.【题目详解】执行程序框图,可得,满足条件,满足条件,满足条件,由题意,此时应该不满足条件,退出循环,输出S的值为.故选D【题目点拨】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.9A【解题分析】计算出黑色部分的面积与总面积的比,即可得解.【题目详解】由,.故选:A【题目点拨】本题考查了面积型几何概型的概率的计算,属于基础题.10A【解题分析】,从而可得,再解不等式即可.【题目详解】由已知,所以,由,解得,.故选:A.【题目点拨】本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.11C【解题分析】由于是放回抽取,故每次的情况有4种,共有64种;先找到最大值不是4的情况,即三次取出标号均不为4的球的情况,进而求解.【题目详解】所有可能的情况有种,其中最大值不是4的情况有种,所以取得小球标号最大值是4的取法有种,故选:C【题目点拨】本题考查古典概型,考查补集思想的应用,属于基础题.12D【解题分析】试题分析:由平面,直线满足,且,所以,又平面,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D考点:平面与平面的位置关系,平面的基本性质及其推论二、填空题:本题共4小题,每小题5分,共20分。1328【解题分析】将已知式转化为,则的展开式中的系数中的系数,根据二项式展开式可求得其值.【题目详解】,所以的展开式中的系数就是中的系数,而中的系数为,展开式中的系数为故答案为:28.【题目点拨】本题考查二项式展开式中的某特定项的系数,关键在于将原表达式化简将三项的幂的形式转化为可求的二项式的形式,属于基础题.14【解题分析】取基向量,然后根据三点共线以及向量加减法运算法则将,表示为基向量后再相乘可得【题目详解】如图:设,又,且存在实数使得,故答案为:【题目点拨】本题考查了平面向量数量积的性质及其运算,属中档题153【解题分析】依题意可得二项式展开式的常数项为即可得到方程,解得即可;【题目详解】解:二项式的展开式中的常数项为,解得.故答案为:【题目点拨】本题考查二项式展开式中常数项的计算,属于基础题.16【解题分析】注意到,故只需比较与1的大小即可.【题目详解】由已知,故有.又由,故有.故答案为:.【题目点拨】本题考查对数式比较大小,涉及到换底公式的应用,考查学生的数学运算能力,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解题分析】(1)依据新定义,的定义域和值域都是,且在上单调,建立方程求解;(2)依据新定义,讨论的单调性,列出方程求解即可。【题目详解】(1)当时,由复合函数单调性知,在区间上是增函数,即有 ,解得 ;同理,当时,有,解得,综上,。(2)若在上是闭函数,则在上是单调函数,当在上是单调增函数,则 ,解得,检验符合; 当在上是单调减函数,则,解得,在上不是单调函数,不符合题意。故满足在区间上是闭函数只有。【题目点拨】本题主要考查学生的应用意识,利用所学知识分析解决新定义问题。18(1)e;(2)2.【解题分析】(1)根据反函数的性质,得出,再利用导数的几何意义,求出曲线在点处的切线为,构造函数,利用导数求出单调性,即可得出的值;(2)设,求导,求出的单调性,从而得出最大值为,结合恒成立的性质,得出正整数的最小值.【题目
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号