资源预览内容
第1页 / 共18页
第2页 / 共18页
第3页 / 共18页
第4页 / 共18页
第5页 / 共18页
第6页 / 共18页
第7页 / 共18页
第8页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
河北省卓越联盟2024届高三5月高三调研测试数学试题考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列函数中,值域为R且为奇函数的是( )ABCD2已知下列命题:“”的否定是“”;已知为两个命题,若“”为假命题,则“”为真命题;“”是“”的充分不必要条件;“若,则且”的逆否命题为真命题.其中真命题的序号为( )ABCD3已知函数的值域为,函数,则的图象的对称中心为( )ABCD4设,则“ “是“”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必条件5某四棱锥的三视图如图所示,该几何体的体积是( )A8BC4D6若函数的图象如图所示,则的解析式可能是( )ABCD7若函数在处取得极值2,则( )A-3B3C-2D28如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为( )A BCD9关于函数,下列说法正确的是( )A函数的定义域为B函数一个递增区间为C函数的图像关于直线对称D将函数图像向左平移个单位可得函数的图像10已知等差数列中,若,则此数列中一定为0的是( )ABCD11函数(或)的图象大致是( )ABCD12已知函数有两个不同的极值点,若不等式有解,则的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13一个村子里一共有个人,其中一个人是谣言制造者,他编造了一条谣言并告诉了另一个人,这个人又把谣言告诉了第三个人,如此等等在每一次谣言传播时,谣言的接受者都是在其余个村民中随机挑选的,当谣言传播次之后,还没有回到最初的造谣者的概率是_14在的二项展开式中,x的系数为_(用数值作答)15若,则=_, = _.16从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在中,已知,为线段的中点,是由绕直线旋转而成,记二面角的大小为.(1)当平面平面时,求的值;(2)当时,求二面角的余弦值.18(12分)某地为改善旅游环境进行景点改造如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1(百米),且F恰在B的正对岸(即BFl3)(1)在图中建立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道AB的何处时,观测EF的视角(EPF)最大?请在(1)的坐标系中,写出观测点P的坐标19(12分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系已知直线的参数方程为(为参数),曲线的极坐标方程为;(1)求直线的直角坐标方程和曲线的直角坐标方程;(2)若直线与曲线交点分别为,点,求的值20(12分)已知函数.(1)解不等式;(2)使得,求实数的取值范围.21(12分)正项数列的前n项和Sn满足: (1)求数列的通项公式; (2)令,数列bn的前n项和为Tn,证明:对于任意的nN*,都有Tn .22(10分)已知函数.(1)当时,求函数的值域.(2)设函数,若,且的最小值为,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解题分析】依次判断函数的值域和奇偶性得到答案.【题目详解】A. ,值域为,非奇非偶函数,排除; B. ,值域为,奇函数,排除;C. ,值域为,奇函数,满足; D. ,值域为,非奇非偶函数,排除;故选:.【题目点拨】本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用.2B【解题分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断【题目详解】“”的否定是“”,正确;已知为两个命题,若“”为假命题,则“”为真命题,正确;“”是“”的必要不充分条件,错误;“若,则且”是假命题,则它的逆否命题为假命题,错误.故选:B【题目点拨】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础3B【解题分析】由值域为确定的值,得,利用对称中心列方程求解即可【题目详解】因为,又依题意知的值域为,所以 得,所以,令,得,则的图象的对称中心为.故选:B【题目点拨】本题考查三角函数 的图像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为04B【解题分析】解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【题目详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件.故选:B【题目点拨】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.5D【解题分析】根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积【题目详解】根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:结合图中数据知,该四棱锥底面为对角线为2的正方形,高为PA=2,四棱锥的体积为.故选:D.【题目点拨】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力属于中等题.6A【解题分析】由函数性质,结合特殊值验证,通过排除法求得结果.【题目详解】对于选项B, 为 奇函数可判断B错误;对于选项C,当时, ,可判断C错误;对于选项D, ,可知函数在第一象限的图象无增区间,故D错误;故选:A.【题目点拨】本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.7A【解题分析】对函数求导,可得,即可求出,进而可求出答案.【题目详解】因为,所以,则,解得,则.故选:A.【题目点拨】本题考查了函数的导数与极值,考查了学生的运算求解能力,属于基础题.8C【解题分析】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【题目详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【题目点拨】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.9B【解题分析】化简到,根据定义域排除,计算单调性知正确,得到答案.【题目详解】,故函数的定义域为,故错误;当时,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【题目点拨】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.10A【解题分析】将已知条件转化为的形式,由此确定数列为的项.【题目详解】由于等差数列中,所以,化简得,所以为.故选:A【题目点拨】本小题主要考查等差数列的基本量计算,属于基础题.11A【解题分析】确定函数的奇偶性,排除两个选项,再求时的函数值,再排除一个,得正确选项【题目详解】分析知,函数(或)为偶函数,所以图象关于轴对称,排除B,C,当时,排除D,故选:A【题目点拨】本题考查由函数解析式选择函数图象,解题时可通过研究函数的性质,如奇偶性、单调性、对称性等,研究特殊的函数的值、函数值的正负,以及函数值的变化趋势,排除错误选项,得正确结论12C【解题分析】先求导得(),由于函数有两个不同的极值点,转化为方程有两个不相等的正实数根,根据,求出的取值范围,而有解,通过分裂参数法和构造新函数,通过利用导数研究单调性、最值,即可得出的取值范围.【题目详解】由题可得:(),因为函数有两个不同的极值点,所以方程有两个不相等的正实数根,于是有解得.若不等式有解,所以因为.设,故在上单调递增,故,所以,所以的取值范围是.故选:C.【题目点拨】本题考查利用导数研究函数单调性、最值来求参数取值范围,以及运用分离参数法和构造函数法,还考查分析和计算能力,有一定的难度.二、填空题:本题共4小题,每小题5分,共20分。13【解题分析】利用相互独立事件概率的乘法公式即可求解.【题目详解】第1次传播,谣言一定不会回到最初的人;从第2次传播开始,每1次谣言传播,第一个制造谣言的人被选中的概率都是,没有被选中的概率是次传播是相互独立的,故为故答案为:【题目点拨】本题考查了相互独立事件概率的乘法公式,考查了考生的分析能力,属于基础题.14-40【解题分析】由题意,可先由公式得出二项展开式的通项,再令10-3r=1,得r=3即可得出x项的系数【题目详解】的二项展开式的通项公式为,r=0,1,2,3,4,5,令,所以的二项展开式中x项的系数为.故答案为:-40.【题目点拨】本题考查二项式定理的应用,解题关键是灵活掌握二项式展开式通项的公式,属于基础题.15128 21 【解题分析】令,求得的值.利用展开式的通项公式,求得的值.【题目详解】令,得.展开式的通项公式为,当时,为,即.【题目点拨】本小题主要考查二项式展开式的通项公式,考查赋值法求解二项式系数有关问题,属于基础题.16【解题分析】基本事件总数,抽得的第一张卡片上的数不小于第二张卡片上的数包含的基本事件有10种,由此能求出抽得的第一张卡片上的数不小于第二张卡片上的数的概率【题目详解】从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数,抽得的第一张卡片上的数不小于第二张卡片上的数包含的基本事件有10种,分别为:,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为故答案为:【题目点拨】本题考查古典概型概率的求法,考查运算求解能力,求解时注意辨别概率的模型三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) ;(
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号