资源预览内容
第1页 / 共20页
第2页 / 共20页
第3页 / 共20页
第4页 / 共20页
第5页 / 共20页
第6页 / 共20页
第7页 / 共20页
第8页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
浙江省越崎中学2024届高三下学期期末调研测试数学试题文试题注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设等差数列的前项和为,若,则( )A23B25C28D292记递增数列的前项和为.若,且对中的任意两项与(),其和,或其积,或其商仍是该数列中的项,则( )ABCD3某中学有高中生人,初中生人为了解该校学生自主锻炼的时间,采用分层抽样的方法从高生和初中生中抽取一个容量为的样本.若样本中高中生恰有人,则的值为( )ABCD4已知为定义在上的偶函数,当时,则( )ABCD5“是函数在区间内单调递增”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件6将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( )A14种B15种C16种D18种7已知向量,则向量与的夹角为( )ABCD8已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( )ABCD9若的二项展开式中的系数是40,则正整数的值为( )A4B5C6D710已知集合,则=( )ABCD11函数满足对任意都有成立,且函数的图象关于点对称,则的值为( )A0B2C4D112命题:的否定为ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知点是椭圆上一点,过点的一条直线与圆相交于两点,若存在点,使得,则椭圆的离心率取值范围为_.14已知二面角l为60,在其内部取点A,在半平面,内分别取点B,C若点A到棱l的距离为1,则ABC的周长的最小值为_15(5分)国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是,则这五位同学答对题数的方差是_16平面向量,(R),且与的夹角等于与的夹角,则 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.(1)求的值;(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?文科生理科生合计获奖6不获奖合计400(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818(12分)如图,在四棱锥中,底面为直角梯形,平面底面,为的中点,是棱上的点且,.求证:平面平面以;求二面角的大小.19(12分)的内角A,B,C的对边分别为a,b,c,已知(1)求B;(2)若,求的面积的最大值20(12分)已知椭圆的焦距为2,且过点(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,()证明:平分线段(其中为坐标原点);()当取最小值时,求点的坐标21(12分)(本小题满分12分)已知椭圆C:的离心率为,连接椭圆四个顶点形成的四边形面积为4(1)求椭圆C的标准方程;(2)过点A(1,0)的直线与椭圆C交于点M, N,设P为椭圆上一点,且O为坐标原点,当时,求t的取值范围22(10分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;(2)若点,为曲线上两动点,且满足,求面积的最大值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】由可求,再求公差,再求解即可.【题目详解】解:是等差数列,又,公差为,故选:D【题目点拨】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.2、D【解题分析】由题意可得,从而得到,再由就可以得出其它各项的值,进而判断出的范围【题目详解】解:,或其积,或其商仍是该数列中的项,或者或者是该数列中的项,又数列是递增数列,只有是该数列中的项,同理可以得到,也是该数列中的项,且有,或(舍,根据,同理易得,故选:D【题目点拨】本题考查数列的新定义的理解和运用,以及运算能力和推理能力,属于中档题3、B【解题分析】利用某一层样本数等于某一层的总体个数乘以抽样比计算即可.【题目详解】由题意,解得.故选:B.【题目点拨】本题考查简单随机抽样中的分层抽样,某一层样本数等于某一层的总体个数乘以抽样比,本题是一道基础题.4、D【解题分析】判断,利用函数的奇偶性代入计算得到答案.【题目详解】,故选:【题目点拨】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.5、C【解题分析】,令解得当,的图像如下图当,的图像如下图由上两图可知,是充要条件【考点定位】考查充分条件和必要条件的概念,以及函数图像的画法.6、D【解题分析】采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起【题目详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此共有27=14种;情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种.综上所述,共有14+4=18种.故选:D【题目点拨】本题考查排列组合公式的具体应用,插空法的应用,属于基础题7、C【解题分析】求出,进而可求,即能求出向量夹角.【题目详解】解:由题意知,. 则 所以,则向量与的夹角为.故选:C.【题目点拨】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式 进行计算.8、D【解题分析】将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,是增函数;当时,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【题目详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,是增函数;当时,是减函数.因此.设,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所以,代入,得.设,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【题目点拨】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题9、B【解题分析】先化简的二项展开式中第项,然后直接求解即可【题目详解】的二项展开式中第项.令,则,(舍)或.【题目点拨】本题考查二项展开式问题,属于基础题10、D【解题分析】先求出集合A,B,再求集合B的补集,然后求【题目详解】,所以 .故选:D【题目点拨】此题考查的是集合的并集、补集运算,属于基础题.11、C【解题分析】根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.【题目详解】因为函数的图象关于点对称,所以的图象关于原点对称,所以为上的奇函数.由可得,故,故是周期为4的周期函数.因为,所以.因为,故,所以.故选:C.【题目点拨】本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为的周期函数,本题属于中档题.12、C【解题分析】命题为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题的否定为,故选C二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】设,设出直线AB的参数方程,利用参数的几何意义可得,由题意得到,据此求得离心率的取值范围.【题目详解】设,直线AB的参数方程为,(为参数)代入圆,化简得:,存在点,使得,即,故答案为:【题目点拨】本题主要考查了椭圆离心率取值范围的求解,考查直线、圆与椭圆的综合运用,考查直线参数方程的运用,属于中档题.14、【解题分析】作A关于平面和的对称点M,N,交和与D,E,连接MN,AM,AN,DE,根据对称性三角形ADC的周长为AB+AC+BCMB+BC+CN,当四点共线时长度最短,结合对称性和余弦定理求解.【题目详解】作A关于平面和的对称点M,N,交和与D,E,连接MN,AM,AN,DE,根据对称性三角形ABC的周长为AB+AC+BCMB+BC+CN,当M,B,C,N共线时,周长最小为MN设平面ADE交l于,O,连接OD,OE,显然ODl,OEl,DOE60,MOA+AON240,OA1,MON120,且OMONOA1,根据余弦定理,故MN21+1211cos1203,故MN故答案为:【题目点拨】此题考查求空间三角形边长的最值,关键在于根据几何性质找出对称关系,结合解三角形知识求解.15、2【解题分析】由这五位同学答对的题数分别是,得该组数据的平均数,则方差16、2【解题分析】试题分析:,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角三、解答题:共
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号