资源预览内容
第1页 / 共18页
第2页 / 共18页
第3页 / 共18页
第4页 / 共18页
第5页 / 共18页
第6页 / 共18页
第7页 / 共18页
第8页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2024届黑龙江七台河市高三二诊考试数学试题试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知为定义在上的奇函数,若当时,(为实数),则关于的不等式的解集是( )ABCD2若,则下列关系式正确的个数是( ) A1B2C3D43记单调递增的等比数列的前项和为,若,则( )ABCD4已知等比数列满足,则( )ABCD5设m,n为直线,、为平面,则的一个充分条件可以是( )A,B,C,D,6若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是( )AEBFCGDH7我国古代有着辉煌的数学研究成果,其中的周髀算经、九章算术、海岛算经、孙子算经、缉古算经,有丰富多彩的内容,是了解我国古代数学的重要文献这5部专著中有3部产生于汉、魏、晋、南北朝时期某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )ABCD8已知、,则下列是等式成立的必要不充分条件的是( )ABCD9已知集合,则=ABCD10已知数列满足,(),则数列的通项公式( )ABCD11盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( )ABCD12某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m3)的频率分布直方图如图所示,则小区内用水量超过15 m3的住户的户数为( )A10B50C60D140二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系xOy中,已知双曲线(a0)的一条渐近线方程为,则a_14在回归分析的问题中,我们可以通过对数变换把非线性回归方程,()转化为线性回归方程,即两边取对数,令,得到.受其启发,可求得函数()的值域是_.15已知函数,则下列结论中正确的是_.是周期函数;的对称轴方程为,;在区间上为增函数;方程在区间有6个根.16平行四边形中,为边上一点(不与重合),将平行四边形沿折起,使五点均在一个球面上,当四棱锥体积最大时,球的表面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围18(12分)如图, 在四棱锥中, 底面是矩形, 四条侧棱长均相等.(1)求证:平面;(2)求证:平面平面.19(12分)已知函数,记不等式的解集为.(1)求;(2)设,证明:.20(12分)在中,角、所对的边分别为、,且.(1)求角的大小;(2)若,的面积为,求及的值.21(12分)设为实数,在极坐标系中,已知圆()与直线相切,求的值22(10分)已知函数.(1)解不等式;(2)若函数最小值为,且,求的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】先根据奇函数求出m的值,然后结合单调性求解不等式.【题目详解】据题意,得,得,所以当时,.分析知,函数在上为增函数.又,所以.又,所以,所以,故选A.【题目点拨】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.2、D【解题分析】a,b可看成是与和交点的横坐标,画出图象,数形结合处理.【题目详解】令,作出图象如图,由,的图象可知,正确;,有,正确;,有,正确;,有,正确.故选:D.【题目点拨】本题考查利用函数图象比较大小,考查学生数形结合的思想,是一道中档题.3、C【解题分析】先利用等比数列的性质得到的值,再根据的方程组可得的值,从而得到数列的公比,进而得到数列的通项和前项和,根据后两个公式可得正确的选项.【题目详解】因为为等比数列,所以,故即,由可得或,因为为递增数列,故符合.此时,所以或(舍,因为为递增数列).故,.故选C.【题目点拨】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3) 为等比数列( )且公比为.4、B【解题分析】由a1+a3+a5=21得 a3+a5+a7=,选B.5、B【解题分析】根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【题目详解】对于A选项,当,时,由于不在平面内,故无法得出.对于B选项,由于,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【题目点拨】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.6、C【解题分析】由于在复平面内点的坐标为,所以,然后将代入化简后可找到其对应的点.【题目详解】由,所以,对应点.故选:C【题目点拨】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.7、D【解题分析】利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.【题目详解】周髀算经、九章算术、海岛算经、孙子算经、缉古算经,这5部专著中有3部产生于汉、魏、晋、南北朝时期记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为故选D【题目点拨】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,. ,再,.依次. 这样才能避免多写、漏写现象的发生.8、D【解题分析】构造函数,利用导数分析出这两个函数在区间上均为减函数,由得出,分、三种情况讨论,利用放缩法结合函数的单调性推导出或,再利用余弦函数的单调性可得出结论.【题目详解】构造函数,则,所以,函数、在区间上均为减函数,当时,则,;当时,.由得.若,则,即,不合乎题意;若,则,则,此时,由于函数在区间上单调递增,函数在区间上单调递增,则,;若,则,则,此时,由于函数在区间上单调递减,函数在区间上单调递增,则,.综上所述,.故选:D.【题目点拨】本题考查函数单调性的应用,构造新函数是解本题的关键,解题时要注意对的取值范围进行分类讨论,考查推理能力,属于中等题.9、C【解题分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养采取数轴法,利用数形结合的思想解题【题目详解】由题意得,则故选C【题目点拨】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分10、A【解题分析】利用数列的递推关系式,通过累加法求解即可【题目详解】数列满足:,可得以上各式相加可得:,故选:【题目点拨】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力11、B【解题分析】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【题目详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【题目点拨】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.12、C【解题分析】从频率分布直方图可知,用水量超过15m的住户的频率为,即分层抽样的50户中有0.350=15户住户的用水量超过15立方米所以小区内用水量超过15立方米的住户户数为,故选C二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】双曲线的焦点在轴上,渐近线为,结合渐近线方程为可求.【题目详解】因为双曲线(a0)的渐近线为,且一条渐近线方程为,所以.故答案为:.【题目点拨】本题主要考查双曲线的渐近线,明确双曲线的焦点位置,写出双曲线的渐近线方程的对应形式是求解的关键,侧重考查数学运算的核心素养.14、【解题分析】转化()为,即得解.【题目详解】由题意:().故答案为:【题目点拨】本题考查类比法求函数的值域,考查了学生逻辑推理,转化划归,数学运算的能力,属于中档题.15、【解题分析】由函数,对选项逐个验证即得答案.【题目详解】函数,是周期函数,最小正周期为,故正确;当或时,有最大值或最小值,此时或,即或,即.的对称轴方程为,故正确;当时,此时在上单调递减,在上单调递增,在区间上不是增函数,故错误;作出函数的部分图象,如图所示方程在区间有6个根,故正确.故答案为:.【题目点拨】本题考查三角恒等变换,考查三角函数的性质,属于中档题.16、【解题分析】依题意可得、四点共圆,即可得到,从而得到三角形为正三角形,利用余弦定理可得,且,要使四棱锥体积最大,当且仅当面面时体积取得最大值,利用正弦定理求出的外接圆的半径,再又可证面,则外接球的半径,即可求出球的表面积;【题目详解】解:依题意可得、四点共圆,所以因为,所以,所以三角形为正三角形,则,利用余弦定理得即,解得,则所以,当面面时,取得最大,所以的外接圆的半径,又面面,且面面, 面所以面,所以外接球的半径所以故答案为:【题目点拨】本题考查多面体的外接球的相关计算,正弦定理、余弦定理的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)增区间为,减区间为;(2).
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号