资源预览内容
第1页 / 共24页
第2页 / 共24页
第3页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第九章 圆锥曲线一基础题组1.【2005天津,文6】设双曲线以椭圆长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为 ( )(A)2 (B) (C) (D)【答案】C2.【2006天津,文8】椭圆的中心为点它的一个焦点为相应于焦点F的准线方程为则这个椭圆的方程是( )(A)(B)(C)(D)【答案】D【解析】椭圆的中心为点它的一个焦点为 半焦距,相应于焦点F的准线方程为 ,则这个椭圆的方程是,选D.3.【2007天津,文7】设双曲线的离心率为,且它的一条准线与抛物线的准线重合,则此双曲线的方程为()【答案】D4.【2008天津,文7】设椭圆(,)的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为(A) (B) (C) (D)【答案】B【解析】抛物线的焦点为,椭圆焦点在轴上,排除A、C,由排除D,选B5.【2009天津,文4】设双曲线(a0,b0)的虚轴长为2,焦距为,则双曲线的渐近线方程为( )A. B.y2x C. D.【答案】C【解析】由题意知:2b2,则可求得,则双曲线方程为:,故其渐近线方程为.6.【2010天津,文13】已知双曲线 (a0,b0)的一条渐近线方程是yx,它的一个焦点与抛物线y216x的焦点相同,则双曲线的方程为_【答案】【解析】解析:由条件知双曲线的焦点为(4,0),所以解得a2,b2,故双曲线方程为 7.【2011天津,文6】已知双曲线的左顶点与抛物线的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为A. B. C. D. 【答案】B8.【2012天津,文11】已知双曲线C1:(a0,b0)与双曲线C2:有相同的渐近线,且C1的右焦点为F(,0),则a_,b_【答案】12【解析】C1与C2的渐近线相同,又C1的右焦点为F(,0),即a2b25a21,b24,a1,b29.【2013天津,文11】已知抛物线y28x的准线过双曲线(a0,b0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为_答案【解析】抛物线y28x的准线为x2,则双曲线的一个焦点为(2,0),即c2,离心率e2,故a1,由a2b2c2得b23,所以双曲线的方程为.10.【2014天津,文6】已知双曲线的一条渐近线平行于直线双曲线的一个焦点在直线上,则双曲线的方程为( )A. B. C. D.【答案】A考点:双曲线的渐近线11. 【2015高考天津,文5】已知双曲线的一个焦点为,且双曲线的渐近线与圆相切,则双曲线的方程为( )(A) (B) (C) (D) 【答案】D【解析】由双曲线的渐近线与圆相切得,由,解得,故选D.【考点定位】圆与双曲线的性质及运算能力.12.【2016高考天津文数】已知双曲线的焦距为,且双曲线的一条渐近线与直线 垂直,则双曲线的方程为(A) (B)(C) (D)【答案】A【解析】试题分析:由题意,得又 ,所以所以双曲线的方程为,选A.【考点】双曲线【名师点睛】求双曲线的标准方程的关注点:(1)确定双曲线的标准方程需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论若双曲线的焦点不能确定时,可设其方程为Ax2By21(AB0)若已知渐近线方程为mxny0,则双曲线方程可设为m2x2n2y2(0)二能力题组1.【2011天津,文18】18.(本小题满分13分)设椭圆的左、右焦点分别为,点满足.()求椭圆的离心率;()设直线与椭圆相交于A,B两点.若直线与圆相交于M,N两点,且|MN|=|AB|,求椭圆的方程.【答案】(1) (2) 12.【2012天津,文19】已知椭圆ab0),点P(,)在椭圆上(1)求椭圆的离心率;(2)设A为椭圆的左顶点,O为坐标原点若点Q在椭圆上且满足|AQ|AO|,求直线OQ的斜率的值【答案】();()【解析】解:(1)因为点P(,)在椭圆上,故,可得于是,所以椭圆的离心率由(1)知,故(1k2)2k24,即5k422k2150,可得k25所以直线OQ的斜率3.【2013天津,文18】设椭圆(ab0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点若8,求k的值【答案】();()【解析】解:(1)设F(c,0),由,知.过点F且与x轴垂直的直线为xc,代入椭圆方程有,解得,于是,解得b,又a2c2b2,从而a,c1,所以椭圆的方程为.因为A(,0),B(,0),所以(x1,y1)(x2,y2)(x2,y2)(x1,y1)62x1x22y1y262x1x22k2(x11)(x21)6(22k2)x1x22k2(x1x2)2k2.由已知得8,解得k.4.【2014天津,文18】设椭圆的左、右焦点分别为,,右顶点为A,上顶点为B.已知=.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点,经过点的直线与该圆相切与点M,=.求椭圆的方程.【答案】(1) (2) 【解析】试题分析:(1)求椭圆离心率,就是列出关于a,b,c的一个等量关系. 由,可得,又,则所以椭圆离心率为(2) 由(1)知所以求椭圆方程只需再确定一个独立条件即可.由切线长=可列出所需的等量关系.先确定圆心:设,由,有由已知,有即,故有,因为点P在椭圆上,故,消可得,而点P不是椭圆的顶点,故,即点P的坐标为设圆的圆心为,则再由得,即所以所求椭圆的方程为考点:椭圆离心率,椭圆方程三拔高题组1.【2005天津,文22】抛物线的方程为,过抛物线上的一点作斜率为的两条直线分别交抛物线于两点(三点互不相同),且满足(I)求抛物线的焦点坐标和准线方程;(II)设直线上一点,满足,证明线段的中点在轴上;(III)当时,若点的坐标为(1,1),求为钝角时点的纵坐标的取值范围【答案】()详见解析,()详见解析,()详见解析.【解析】证明:(I)由于函数定义,对任意整数,有(II)证明:由函数的图象和函数的图象知,对于任意整数,在开区间(,)内方程只有一个根,当时,当时,而在区间(,)内,要么恒正,要么恒负因此时的符号与时的符号相反综合以上,得:的每一个根都是的极值点 由得,当时,即对于时, 综合 、 :对于任意 ,由:和,得: 又:,但时, 综合 、 得:2.【2006天津,文22】如图,双曲线的离心率为、分别为左、右焦点,M为左准线与渐近线在第二象限内的交点,且(I)求双曲线的方程;(II)设和是轴上的两点。过点A作斜率不为0的直线使得交双曲线于C、D两点,作直线BC交双曲线于另一点E。证明直线DE垂直于轴。【答案】(I)(II)详见解析【解析】(I)解:根据题设条件,设点则、满足因解得,故利用得于是因此,所求双曲线方程为(II)解:设点则直线的方程为于是、两点坐标满足将代入得由已知,显然于是因为得同理,、两点坐标满足可解得所以,故直线DE垂直于轴3.【2007天津,文22】设椭圆的左、右焦点分别为是椭圆上的一点,原点到直线的距离为()证明;()求使得下述命题成立:设圆上任意点处的切线交椭圆于,两点,则【答案】()详见解析;()详见解析;()由题设,原点到直线的距离为,即,将代入原式并化简得,即()解法一:圆上的任意点处的切线方程为当时,圆上的任意点都在椭圆内,故此圆在点处的切线必交椭圆于两个不同的点和,因此点,的坐标是方程组的解当时,由式得代入式,得,即,于是,若,则所以,由,得在区间内此方程的解为当时,必有,同理求得在区间内的解为另一方面,当时,可推出,从而综上所述,使得所述命题成立4.【2008天津,文22】已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是()求双曲线的方程;()若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围【答案】(I),(II)【解析】()解:设双曲线的方程为,由题设得 解得所以双曲线的方程为()解:设直线的方程为,点,的坐标满足方程组将式代入式,得,整理得此方程有两个不等实根,于是,且整理得 由根与系数的关系可知线段的中点坐标满足,从而线段的垂直平分线的方程为此直线与轴,轴的交点坐标分别为,由题设可得整理得,将上式代入式得,整理得,解得或所以的取值范围是5.【2009天津,文22】已知椭圆(ab0)的两个焦点分别为F1(c,0)和F2(c,0)(c0),过点E(,0)的直线与椭圆相交于A,B两点,且F1AF2B,|F1A|2|F2B|.(1)求椭圆的离心率;(2)求直线AB的斜率;(3)设点C与点A关于坐标原点对称,直线F2B上有一点H(m,n)(m0)在AF1C的外接圆上,求的值.本小题主要考查椭圆的标准方程和几何性质、直线的方程、圆的方程等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查运算能力和推理能力.满分14分.【答案】();();()【解析】(1)解:由F1AF2B且|F1A|2|F2B|,得,从而.整理,得a23c2.故离心率.(2)解:由(1),得b2a2c22c2.所以椭圆的方程可写为2x2+3y26c2.设直线AB的方程为,即yk(x3c).由已知设A(x1,y1),B(x2,y2),则它们的坐标满足方程组消去y并整理,得(2+3k2)x218k2cx+27k2c26c20.依题意,48c2(13k2)0,得.而.由题设知,点B为线段AE的中点,所以x1+3c2x2.联立解得,.将
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号