资源预览内容
第1页 / 共9页
第2页 / 共9页
第3页 / 共9页
亲,该文档总共9页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第46练不等式选讲题型一含绝对值不等式的解法例1(2013辽宁)已知函数f(x)|xa|,其中a1.(1)当a2时,求不等式f(x)4|x4|的解集;(2)已知关于x的不等式|f(2xa)2f(x)|2的解集为x|1x2,求a的值破题切入点(1)用零点分段法解绝对值不等式的步骤:求零点;划区间、去绝对值号;分别解去掉绝对值的不等式;取每个结果的并集,注意在分段时不要遗漏区间的端点值(2)用图象法、数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法解(1)当a2时,f(x)|x4|当x2时,由f(x)4|x4|得2x64,解得x1;当2x4时,f(x)4|x4|无解;当x4时,由f(x)4|x4|得2x64,解得x5;所以f(x)4|x4|的解集为x|x1或x5(2)记h(x)f(2xa)2f(x),则h(x)由|h(x)|2,解得x.又已知|h(x)|2的解集为x|1x2,所以于是a3.题型二不等式的证明例2求证下列不等式:(1)设ab0,求证:3a32b33a2b2ab2;(2)a68b6c62a2b2c2;(3)a24b29c22ab3ac6bc.破题切入点(1)作差法应该是证明不等式的常用方法作差法证明不等式的一般步骤:作差;分解因式;与0比较;结论关键是代数式的变形能力(2)注意观察不等式的结构,利用基本不等式或柯西不等式证明证明(1)3a32b3(3a2b2ab2)3a2(ab)2b2(ab)(ab)(3a22b2)ab0,ab0,3a22b20.(ab)(3a22b2)0.3a32b33a2b2ab2.(2)a68b6c633a2b2c22a2b2c2,a68b6c62a2b2c2.(3)a24b224ab,a29c226ac,4b29c2212bc,2a28b218c24ab6ac12bc,a24b29c22ab3ac6bc.题型三利用算术几何平均不等式或柯西不等式证明或求最值例3(1)已知a,b,c均为正数,证明:a2b2c2()26,并确定a,b,c为何值时,等号成立;(2)已知a,b,c(0,),且abc1,求的最大值破题切入点利用算术几何平均不等式或柯西不等式求最值时,首先要观察式子特点,构造出基本不等式或柯西不等式的结构形式,其次要注意取得最值的条件是否成立解(1)方法一因为a,b,c均为正数,由算术几何平均不等式得a2b2c23(abc),3(abc) ,所以()29(abc) .故a2b2c2()23(abc) 9(abc) .又3(abc) 9(abc) 26,所以原不等式成立当且仅当abc时,式和式等号成立当且仅当3(abc) 9(abc) 时,式等号成立故当且仅当abc3时,原不等式等号成立方法二因为a,b,c均为正数,由基本不等式得a2b22ab,b2c22bc,c2a22ac.所以a2b2c2abbcac.同理,故a2b2c2()2abbcac6.所以原不等式成立当且仅当abc时,式和式等号成立,当且仅当abc,(ab)2(bc)2(ac)23时,式等号成立故当且仅当abc3时,原不等式等号成立(2)方法一利用算术几何平均不等式()2(3a1)(3b1)(3c1)222(3a1)(3b1)(3c1)(3a1)(3b1)(3b1)(3c1)(3a1)(3c1)3(3a1)(3b1)(3c1)18,3,()max3.方法二利用柯西不等式(121212)()2()2()2(111)2()233(abc)3又abc1,()218,3,当且仅当时,等号成立()max3.总结提高(1)对于带有绝对值的不等式的求解,要掌握好三个方法:一个是根据绝对值的几何意义,借助于数轴的直观解法;二是根据绝对值的意义,采用零点分区去绝对值后转化为不等式组的方法;三是构造函数,通过函数图象的方法要在解题过程中根据不同的问题情境灵活选用这些方法(2)使用绝对值三角不等式求最值很方便,如|x2|x4|(x2)(x4)|6.(3)易错点:解绝对值不等式时忽视去掉绝对值的分界点;在使用算术一几何平均不等式、柯西不等式求最值时忽视讨论等号成立的条件1(2014重庆改编)若不等式|2x1|x2|a2a2对任意实数x恒成立,求实数a的取值范围解设y|2x1|x2|当x5;当2x;当x时,y3x1,故函数y|2x1|x2|的最小值为.因为不等式|2x1|x2|a2a2对任意实数x恒成立,所以a2a2.解不等式a2a2,得1a,故a的取值范围为1,2(2013课标全国)已知函数f(x)|2x1|2xa|,g(x)x3.(1)当a2时,求不等式f(x)1,且当x时,f(x)g(x),求a的取值范围解(1)当a2时,不等式f(x)g(x)化为|2x1|2x2|x30.设函数y|2x1|2x2|x3,则y其图象如图所示,由图象可知,当且仅当x(0,2)时,y0,原不等式的解集是x|0x1,则,f(x)|2x1|2xa|当x时,f(x)a1,即a1x3在x上恒成立a13,即a,a的取值范围为.3(2013福建)设不等式|x2|a(aN*)的解集为A,且A,A,(1)求a的值;(2)求函数f(x)|xa|x2|的最小值解(1)因为A,且A,所以a,且a,解得0,b0,且.(1)求a3b3的最小值;(2)是否存在a,b,使得2a3b6?并说明理由解(1)由,得ab2,且当ab时等号成立故a3b324,且当ab时等号成立所以a3b3的最小值为4.(2)由(1)知,2a3b24.由于46,从而不存在a,b,使得2a3b6.5设函数f(x)|xa|3x,其中a0.(1)当a1时,求不等式f(x)3x2的解集;(2)若不等式f(x)0的解集为x|x1,求a的值解(1)当a1时,f(x)3x2可化为|x1|2.由此可得x3或x1.故不等式f(x)3x2的解集为x|x3或x1(2)由f(x)0得|xa|3x0.此不等式化为不等式组或即或因为a0,所以不等式组的解集为x|x由题设可得1,故a2.6若3x4y2,试求x2y2的最小值解由柯西不等式(3242)(x2y2)(3x4y)2,得25(x2y2)4,所以x2y2.不等式中当且仅当时等号成立,x2y2取得最小值,由方程组解得因此当x,y时,x2y2取得最小值,最小值为.7(2013课标全国)设a、b、c均为正数,且abc1,证明:(1)abbcca;(2)1.证明(1)由a2b22ab,b2c22bc,c2a22ac得a2b2c2abbcca.由题设得(abc)21,即a2b2c22ab2bc2ca1.所以3(abbcca)1,即abbcca.(2)因为b2a,c2b,a2c,故(abc)2(abc),即abc.所以1.8(2014课标全国)设函数f(x)|xa|(a0)(1)证明:f(x)2;(2)若f(3)0,有f(x)|xa|a2.所以f(x)2.(2)解f(3)|3a|.当a3时,f(3)a,由f(3)5,得3a.当0a3时,f(3)6a,由f(3)5,得|x1|成立,求实数x的取值范围解由柯西不等式知12()2()2a2(b)2(c)2(1abc)2即6(a22b23c2) (a2b3c)2又a22b23c26,66(a2b3c)2,6a2b3c6,存在实数a,b,c,使得不等式a2b3c|x1|成立|x1|6,7x5.x的取值范围是x|7x510(2014福建)已知定义在R上的函数f(x)|x1|x2|的最小值为a.(1)求a的值;(2)若p,q,r是正实数,且满足pqra,求证:p2q2r23.(1)解因为|x1|x2|(x1)(x2)|3,当且仅当1x2时,等号成立,所以f(x)的最小值等于3,即a3.(2)证明由(1)知pqr3,又因为p,q,r是正实数,所以(p2q2r2)(121212)(p1q1r1)2(pqr)29,即p2q2r23.11已知f(x)|x1|x1|,不等式f(x)4的解集为M.(1)求M;(2)当a,bM时,证明:2|ab|4ab|.(1)解f(x)|x1|x1|当x1时,由2x4,得2x1;当1x1时,f(x)21时,由2x4,得1x2.综上可得2x2,即M(2,2)(2)证明a,bM,即2a2,2b2,4(ab)2(4ab)24(a22abb2)(168aba2b2)(a24)(4b2)0,4(ab)2(4ab)2,2|ab
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号