资源预览内容
第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
亲,该文档总共5页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
42归纳与类比推理1已知x0,观察不等式x22,x33,由此可得一般结论:xn1(nN*),则a的值为_答案nn解析根据已知,续写一个不等式:x44,由此可得ann.2在平面内点O是直线AB外一点,点C在直线AB上,若,则1;类似地,如果点O是空间内任一点,点A,B,C,D中任意三点均不共线,并且这四点在同一平面内,若xyz,则xyz_.答案1解析在平面内,由三角形法则,得,.因为A,B,C三点共线,所以存在实数t,使t,即t(),所以(1).因为,所以,1,所以1.类似地,在空间内可得,1.因为,所以xyz1.3观察下列各式:553 125,5615 625,5778 125,58390 625,591 953 125,则52 014的末四位数字为_答案5625解析由观察易知55的末四位数字为3125,56的末四位数字为5625,57的末四位数字为8125,58的末四位数字为0625,59的末四位数字为3125,故周期T4.又由于2 01450342,因此52 014的末四位数字是5625.4观察下列各式:ab1,a2b23,a3b34,a4b47,a5b511,则a10b10_.答案123解析记anbnf(n),则f(3)f(1)f(2)134;f(4)f(2)f(3)347;f(5)f(3)f(4)11;f(6)f(4)f(5)18;f(7)f(5)f(6)29;f(8)f(6)f(7)47;f(9)f(7)f(8)76;f(10)f(8)f(9)123,即a10b10123.5已知正三角形内切圆的半径是其高的,把这个结论推广到空间正四面体,类似的结论是_答案正四面体的内切球的半径是其高的解析设正四面体的每个面的面积是S,高是h,内切球半径为R,由体积分割可得:SR4Sh,所以Rh.6观察下列等式:(11)21(21)(22)2213(31)(32)(33)23135照此规律,第n个等式可为_答案(n1)(n2)(nn)2n13(2n1)解析由已知的三个等式左边的变化规律,得第n个等式左边为(n1)(n2)(nn),由已知的三个等式右边的变化规律,得第n个等式右边为2n与n个奇数之积,即2n13(2n1)7(2013湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,第n个三角形数为n2n,记第n个k边形数为N(n,k)(k3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)n2n,正方形数 N(n,4)n2,五边形数 N(n,5)n2n,六边形数 N(n,6)2n2n可以推测N(n,k)的表达式,由此计算N(10,24)_.答案1 000解析由N(n,4)n2,N(n,6)2n2n,可以推测:当k为偶数时,N(n,k)n2n,N(10,24)100101 1001001 000.8两点等分单位圆时,有相应正确关系为sin sin()0;三点等分单位圆时,有相应正确关系为sin sin()sin()0.由此可以推知:四点等分单位圆时的相应正确关系为_答案sin sin()sin()sin()0解析由类比推理可知,四点等分单位圆时,与的终边互为反向延长线,与的终边互为反向延长线,如图9(2013陕西)观察下列等式121,12223,1222326,1222324210,照此规律,第n个等式可为_答案12223242(1)n1n2(1)n1解析观察等式左边的式子,每次增加一项,故第n个等式左边有n项,指数都是2,且正、负相间,所以等式左边的通项为(1)n1n2.等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,.设此数列为an,则a2a12,a3a23,a4a34,a5a45,anan1n,各式相加得ana1234n,即an123n.所以第n个等式为12223242(1)n1n2(1)n1.10如图1是一个边长为1的正三角形,分别连结这个三角形三边中点,将原三角形剖分成4个三角形(如图2),再分别连结图2中一个小三角形三边的中点,又可将原三角形剖分成7个三角形(如图3),依此类推设第n个图中原三角形被剖分成an个三角形,则第4个图中最小三角形的边长为_;a100_.答案298解析由三角形的生成规律得,后面的每一个图形中小三角形的边长均等于前一个图形中小三角形边长的,即最小三角形的边长是以1为首项,为公比的等比数列,则第4个图中最小三角形的边长等于1,由a2a1a3a2anan13可得,数列an是首项为1,公差为3的等差数列,则a100a19931297298.11观察下列不等式:1,1,1,照此规律,第五个不等式为_答案1解析观察每行不等式的特点,每行不等式左端最后一个分数的分母与右端值的分母相等,且每行右端分数的分子构成等差数列第五个不等式为1.12(2014陕西)观察分析下表中的数据:多面体面数(F)顶点数(V)棱数(E)三棱柱569五棱锥6610立方体6812猜想一般凸多面体中F,V,E所满足的等式是_答案FVE2解析观察F,V,E的变化得FVE2.
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号