资源预览内容
第1页 / 共88页
第2页 / 共88页
第3页 / 共88页
第4页 / 共88页
第5页 / 共88页
第6页 / 共88页
第7页 / 共88页
第8页 / 共88页
第9页 / 共88页
第10页 / 共88页
亲,该文档总共88页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
综合性问题一、选择题1. (2014年山东东营,第10题3分)如图,四边形ABCD为菱形,AB=BD,点B、C、D、G四个点在同一个圆O上,连接BG并延长交AD于点F,连接DG并延长交AB于点E,BD与CG交于点H,连接FH,下列结论:AE=DF;FHAB;DGHBGE;当CG为O的直径时,DF=AF中其中正确结论的个数是()A1B2C3D4考点:圆的综合题分析:由四边形ABCD是菱形,AB=BD,得出ABD和BCD是等边三角形,再由B、C、D、G四个点在同一个圆上,得出ADE=DBF,由ADEDBF,得出AE=DF,利用内错角相等FBA=HFB,求证FHAB,利用DGH=EGB和EDB=FBA,求证DGHBGE,利用CG为O的直径及B、C、D、G四个点共圆,求出ABF=12090=30,在RTAFB中求出AF=AB在RTDFB中求出FD=BD,再求得DF=AF解答:解:四边形ABCD是菱形,AB=BC=DC=AD,又AB=BD,ABD和BCD是等边三角形,A=ABD=DBC=BCD=CDB=BDA=60,又B、C、D、G四个点在同一个圆上,DCH=DBF,GDH=BCH,ADE=ADBGDH=60EDB,DCH=BCDBCH=60BCH,ADE=DCH,ADE=DBF,在ADE和DBF中,ADEDBF(ASA)AE=DF故正确,由中证得ADE=DBF,EDB=FBA,B、C、D、G四个点在同一个圆上,BDC=60,DBC=60,BGC=BDC=60,DGC=DBC=60,BGE=180BGCDGC=1806060=60,FGD=60,FGH=120,又ADB=60,F、G、H、D四个点在同一个圆上,EDB=HFB,FBA=HFB,FHAB,故正确,B、C、D、G四个点在同一个圆上,DBC=60,DGH=DBC=60,EGB=60,DGH=EGB,由中证得ADE=DBF,EDB=FBA,DGHBGE,故正确,如下图CG为O的直径,点B、C、D、G四个点在同一个圆O上,GBC=GDC=90,ABF=12090=30,A=60,AFB=90AF=AB,又DBF=6030=30,ADB=60,DFB=90,FD=BD,AB=BD,DF=AF,故正确,故选:D点评:此题综合考查了圆及菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,运用四点共圆找出相等的角是解题的关键解题时注意各知识点的融会贯通2. (2014甘肃白银、临夏,第10题3分)如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2x0.8),EC=y则在下面函数图象中,大致能反映y与x之闻函数关系的是()ABCD考点:动点问题的函数图象分析:通过相似三角形EFBEDC的对应边成比例列出比例式=,从而得到y与x之间函数关系式,从而推知该函数图象解答:解:根据题意知,BF=1x,BE=y1,且EFBEDC,则=,即=,所以y=(0.2x0.8),该函数图象是位于第一象限的双曲线的一部分A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分故选C点评:本题考查了动点问题的函数图象解题时,注意自变量x的取值范围3(2014甘肃兰州,第15题4分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()ABCD考点:动点问题的函数图象分析:根据三角形的面积即可求出S与t的函数关系式,根据函数关系式选择图象解答:解:当0t4时,S=tt=t2,即S=t2该函数图象是开口向上的抛物线的一部分故B、C错误;当4t8时,S=16(t4)(t4)=t2,即S=t2+4t+8该函数图象是开口向下的抛物线的一部分故A错误故选:D点评:本题考查了动点问题的函数图象本题以动态的形式考查了分类讨论的思想,函数的知识和等腰直角三角形,具有很强的综合性三、解答题1. (2014上海,第25题14分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G(1)当圆C经过点A时,求CP的长;(2)联结AP,当APCG时,求弦EF的长;(3)当AGE是等腰三角形时,求圆C的半径长考点:圆的综合题分析:(1)当点A在C上时,点E和点A重合,过点A作AHBC于H,直接利用勾股定理求出AC进而得出答案;(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;(3)当AEG=B时,A、E、G重合,只能AGE=AEG,利用ADBC,得出GAEGBC,进而求出即可解答:解:(1)如图1,设O的半径为r,当点A在C上时,点E和点A重合,过点A作AHBC于H,BH=ABcosB=4,AH=3,CH=4,AC=5,此时CP=r=5;(2)如图2,若APCE,APCE为平行四边形,CE=CP,四边形APCE是菱形,连接AC、EP,则ACEP,AM=CM=,由(1)知,AB=AC,则ACB=B,CP=CE=,EF=2=;(3)如图3:过点C作CNAD于点N,cosB=,B45,BCG90,BGC45,AEG=BCGACB=B,当AEG=B时,A、E、G重合,只能AGE=AEG,ADBC,GAEGBC,=,即=,解得:AE=3,EN=ANAE=1,CE=点评:此题主要考查了相似三角形的判定与性质以及勾股定理以及锐角三角函数关系等知识,利用分类讨论得出AGE是等腰三角形时只能AGE=AEG进而求出是解题关键2. (2014四川巴中,第31题12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx4与x轴交于点A(2,0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴(1)求抛物线的解析式;(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线lx轴,交AC或BC于点P,设点M的运动时间为t秒(t0)求点M的运动时间t与APH的面积S的函数关系式,并求出S的最大值考点:二次函数综合题分析:(1)根据抛物线y=ax2+bx4与x轴交于点A(2,0),直线x=1是该抛物线的对称轴,得到方程组,解方程组即可求出抛物线的解析式;(2)由于点M到达抛物线的对称轴时需要3秒,所以t3,又当点M到达原点时需要2秒,且此时点H立刻掉头,所以可分两种情况进行讨论:当0t2时,由AMPAOC,得出比例式,求出PM,AH,根据三角形的面积公式求出即可;当2t3时,过点P作PMx轴于M,PFy轴于点F,表示出三角形APH的面积,利用配方法求出最值即可解答:(1)抛物线y=ax2+bx4与x轴交于点A(2,0),直线x=1是该抛物线的对称轴,解得:,抛物线的解析式是:y=x2x4,(2)分两种情况:当0t2时,PMOC,AMPAOC,=,即=,PM=2t解方程x2x4=0,得x1=2,x2=4,A(2,0),B(4,0),AB=4(2)=6AH=ABBH=6t,S=PMAH=2t(6t)=t2+6t=(t3)2+9,当t=2时S的最大值为8;当2t3时,过点P作PMx轴于M,作PFy轴于点F,则COBCFP,又CO=OB,FP=FC=t2,PM=4(t2)=6t,AH=4+(t2)=t+1,S=PMAH=(6t)(t+1)=t2+4t+3=(t)2+,当t=时,S最大值为综上所述,点M的运动时间t与APQ面积S的函数关系式是S=,S的最大值为点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,三角形的面积,二次函数的最值等知识,综合性较强,难度适中运用数形结合、分类讨论及方程思想是解题的关键3. (2014山东威海,第25题12分)如图,已知抛物线y=ax2+bx+c(a0)经过A(1,0),B(4,0),C(0,2)三点(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出BDA的度数考点:二次函数综合题分析:(1)本题需先根据已知条件,过C点,设出该抛物线的解析式为y=ax2+bx+2,再根据过A,B两点,即可得出结果;(2)由图象可知,以A、B为直角顶点的ABE不存在,所以ABE只可能是以点E为直角顶点的三角形由相似关系求出点E的坐标;(3)如图2,连结AC,作DEx轴于点E,作BFAD于点F,由BCAD设BC的解析式为y=kx+b,设AD的解析式为y=kx+n,由待定系数法求出一次函数的解析式,就可以求出D坐标,由勾股定理就可以求出BD的值,由勾股定理的逆定理就可以得出ACB=90,由平行线的性质就可以得出CAD=90,就可以得出四边形ACBF是矩形,就可以得出BF的值,由勾股定理求出DF的值,而得出DF=BF而得出结论解答:解:(1)该抛物线过点C(0,2),可设该抛物线的解析式为y=ax2+bx+2将A(1,0),B(4,0)代入,得 ,解得 ,抛物线的解析式为:y=x2+x+2(2)存在由图象可知,以A、B为直角顶点的ABE不存在,所以ABE只可能是以点E为直角顶点的三角形在RtBOC中,OC=2,OB=4,BC=在RtBOC中,设BC边上的高为h,则h=24,h=BEACOB,设E点坐标为(x,y),
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号