资源预览内容
第1页 / 共23页
第2页 / 共23页
第3页 / 共23页
第4页 / 共23页
第5页 / 共23页
第6页 / 共23页
第7页 / 共23页
第8页 / 共23页
第9页 / 共23页
第10页 / 共23页
亲,该文档总共23页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
精品资料FLAC数值模拟介绍.FLAC-3D(Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc开发的三维快速拉格朗日分析程序, 该程序能较好地模拟地质材料在达到强度极限或屈服极限时, 发生的破坏或塑性流动的力学行为, 特别适用于分析渐进破坏和失稳以及模拟大变形.FLAC3D分析的使用领域根据手册总结如下: (1) 承受荷载能力与变形分析: 用于边坡稳定和基础设计 (2) 渐进破坏与坍塌反演: 用于硬岩采矿和隧道设计 (3) 断层构造的影响研究: 用于采矿设计 (4) 施加于地质体锚索支护所提供的支护力研究: 岩锚和土钉的设计 (5) 排水和不排水加载条件下全饱和流体流动和孔隙压力扩散研究: 挡土墙结构的地下水流动, 和土体固结研究 (6) 粘性材料的蠕变特性: 用于碳酸钾盐矿设计 (7) 陡滑面地质结构的动态加载: 用于地震工程和矿山岩爆研究 (8) 爆炸荷载和振动的动态响应: 用于隧道开挖和采矿活动 (9) 结构的地震感应: 用于土坝设计 (10) 由于温度诱发荷载所导致的变形和结构的不稳定 (11) 大变形材料分析: 用于研究粮仓谷物流动和放矿的矿石流动10种材料本构模型Flac3D中为岩土工程问题的求解开发了特有的本构模型, 总共包含了10种材料模型: (1) 开挖模型null (2) 3个弹性模型(各向同性, 横观各向同性和正交各向同性弹性模型) (3) 6个塑性模型(Drucker-Prager模型、Morh-Coulomb模型、应变硬化/软化模型、遍布节理模型、双线性应变硬化/软化遍布节理模型和修正的cam粘土模型). Flac3D网格中的每个区域可以给以不同的材料模型, 并且还允许指定材料参数的统计分布和变化梯度. 还包含了节理单元, 也称为界面单元, 能够模拟两种或多种材料界面不同材料性质的间断特性. 节理允许发生滑动或分离, 因此可以用来模拟岩体中的断层、节理或摩擦边界. FLAC3D中的网格生成器gen, 通过匹配、连接由网格生成器生成局部网格, 能够方便地生成所需要的三维结构网格. 还可以自动产生交岔结构网格(比如说相交的巷道), 三维网格由整体坐标系x, y, z系统所确定, 这就提供了比较灵活的产生和定义三维空间参数.五种计算模式(l) 静力模式:这是FLAC-3D默认模式, 通过动态松弛方法得静态解. (2) 动力模式:用户可以直接输人加速度、速度或应力波作为系统的边界条件或初始条件, 边界可以固定边界和自由边界. 动力计算可以与渗流问题相藕合. (3) 蠕变模式:有五种蠕变本构模型可供选择以模拟材料的应力-应变-时间关系:Maxwell模型、双指数模型、参考蠕变模型、粘塑性模型、脆盐模型. (4) 渗流模式:可以模拟地下水流、孔隙压力耗散以及可变形孔隙介质与其间的粘性流体的耦合. 渗流服从各向同性达西定律, 流体和孔隙介质均被看作可变形体. 考虑非稳定流, 将稳定流看作是非稳定流的特例. 边界条件可以是固定孔隙压力或恒定流, 可以模拟水源或深井. 渗流计算可以与静力、动力或温度计算耦合, 也可以单独计算. (5) 温度模式:可以模拟材料中的瞬态热传导以及温度应力. 温度计算可以与静力、动力或渗流计算藕合, 也可单独计算. 模拟多种结构形式(l) 对于通常的岩体、土体或其他材料实体, 用八节点六面体单元模拟. (2) FIAC-3D包含有四种结构单元:梁单元、锚单元、桩单元、壳单元. 可用来模拟岩土工程中的人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩等. (3) FLAC-3D的网格中可以有界面, 这种界面将计算网格分割为若干部分, 界面两边的网格可以分离, 也可以发生滑动, 因此, 界面可以模拟节理、断层或虚拟的物理边界. 有多种边界条件边界方位可以任意变化, 边界条件可以是速度边界、应力边界, 单元内部可以给定初始应力, 节点可以给定初始位移、速度等, 还可以给定地下水位以计算有效应力、所有给定量都可以具有空间梯度分布.FLAC-3D内嵌语言FISHFLAC-3D具有强大内嵌语言FISH, 使得用户可以定义新的变量或函数, 以适应用户的特殊需要, 例如, 利用HSH做以下事情:(l) 用户可以自定义材料的空间分布规律, 如非线性分布等. (2) 用户可以定义变量, 追踪其变化规律并绘图表示或打印输出. (3) 用户可以自己设计FLAC-3D内部没有的单元形态. (4) 在数值试验中可以进行伺服控制. (5) 用户可以指定特殊的边界条件. (6) 自动进行参数分析(7) 利用FLAC-3D内部定义的Fish变量或函数, 用户可以获得计算过程中节点、单元参数, 如坐标、位移、速度、材料参数、应力、应变、不平衡力等.FLAC-3D前后处理功能FLAC-3D具有强大的自动三维网格生成器, 内部定义了多种单元形态, 用户还可以利用FISH自定义单元形态, 通过组合基本单元, 可以生成非常复杂的三维网格, 比如交叉隧洞等. 在计算过程中的任何时刻用户都可以用高分辨率的彩色或灰度图或数据文件输出结果, 以对结果进行实时分析, 图形可以表示网格、结构以及有关变量的等值线图、矢量图、曲线图等, 可以给出计算域的任意截面上的变量图或等直线图, 计算域可以旋转以从不同的角度观测计算结果.FLAC3D计算分析一般步骤与大多数程序采用数据输入方式不同, FLAC采用的是命令驱动方式. 命令字控制着程序的运行. 在必要时, 尤其是绘图, 还可以启动FLAc用户交互式图形界面. 为了建立FLAC计算模型, 必须进行以下三个方面的工作: (1) 有限差分网格 (2) 本构特性与材料性质 (3) 边界条件与初始条件 完成上述工作后, 可以获得模型的初始平衡状态, 也就是模拟开挖前的原岩应力状态. 然后, 进行工程开挖或改变边界条件来进行工程的响应分析, 类似于FLAC的显式有限差分程序的问题求解. 与传统的隐式求解程序不同, FLAC采用一种显式的时间步来求解代数方程. 进行一系列计算步后达到问题的解. 在FLAC中, 达到问题所需的计算步能够通过程序或用户加以控制, 但是, 用户必须确定计算步是否已经达到问题的最终的解.后处理(一) 用tecplot绘制曲线(1) 第一主应力(2) xdisp、ydisp、zdisp、disp(二) 用excel做曲线 隧道 (1) 做地表沉降槽(zdisp) (2) 地表横向位移(xdisp) (3) 隧道中线竖向沉降曲线(zdisp) (4) 提取位移矢量图, (5) 显示初期支护结构内力 (6) 显示state(找塑性区) 基坑 (1) 做地表沉降槽(zdisp) (2) 提取位移矢量图, (3) 显示初期支护结构内力 (4) 显示state(找塑性区) 边坡 (1) 做安全系数和应变图 模型最优化用FLAC3D解决问题时, 为了得到最有效的分析使模型最优化是很重要的.(1) 检查模型运行时间:一个FLAC3D例子的运行时间是区域数的4/3倍. 这个规则适用于平衡条件下的弹性问题. 对于塑性问题, 运行时间会有点改变, 但是不会很大, 但是如果发生塑性流动, 这个时间将会大的多. 对一个具体模型检查自己机子的计算速度很重要. 一个简单的方法就是运行基准测试. 然后基于区域数的改变, 用这个速度评估具体模型的计算速度. (2) 影响运行时间的因素:FLAC3D有时会需要较长时间才可以收敛主要发生在下列情况下: (a)材料本身刚度变异或材料与结构及接触面之间的刚度差异很大. (b)划分的区域尺寸相差很大. 这些尺寸差异越大编码就越无效. 在做详细分析前应该研究刚度差异的影响. 例如, 一个荷载作用下的刚性板, 可以用一系列顶点固定的网格代替, 并施以等速度. (记住FIX命令确定速度, 而不是位移. )地下水的出现将使体积模量发生明显的增加(流体-固体相互作用). (3) 考虑网格划分的密度:FLAC3D使用常应变单元. 如果应力/应变曲线倾斜度比较高, 那么你将需要许多区域来代表多变的分区. 通过运行划分密度不同的同一个问题来检查影响. FLAC3D应用常应变区域, 因为当用多的少节点单元与用比较少的多节点单元模拟塑性流动时相比更准确. 应尽可能保持网格, 尤其是重要区域网格的统一. 避免长细比大于5:1的细长单元, 并避免单元尺寸跳跃式变化(即应使用平滑的网格). 应用GENERATE命令中的比率关键词, 使细划分区域平滑过渡到粗划分区域. (4) 自动发现平衡状态:默认情况下, 当执行SOLVE 命令时, 系统将自动发现力的平衡. 当模型中所有网格顶点中所有力的平均量级与其中最大的不平衡力的量级的比率小于1*10时, 认为达到了平衡状态. 注意一个网格顶点的力由内力(例如, 由于重力)和外力(例如, 由于所加的应力边界条件)共同引起. 因为比率是没有尺寸的, 所以对于有不同的单元体系的模型, 在大多数情况下, 不平衡力和所加力比率的限制给静力平衡提供了一个精确的限制. 同时还提供了其他的比率限制;可以用SET ratio 命令施加. 如果默认的比率限制不能为静力平衡提供一个足够精确的限制, 那么应考虑可供选择的比率限制. 默认的比率限制同样可用于热分析和流体分析的稳定状态求解. 对于热分析, 是对不平衡热流量和所加的热流量量级进行评估, 而不是力. 对于流体分析, 对不平衡流度和所加流度量级进行评估. (5) 考虑选择阻尼:对于静力分析, 默认的阻尼是局部阻尼, 对于消除大多数网格顶点的速度分量周期性为零时的动能很有效. 这是因为质量的调节过程依赖于速度的改变. 局部阻尼对于求解静力平衡是一个非常有效的计算法则且不会引入错误的阻尼力(见Cundall 1987). 如果在求解最后状态, 重要区域的网格海域的速度分量不为零, 那么说明默认的阻尼对于达到平衡状态是不够的. 有另外一种形式的阻尼, 叫组合阻尼, 相比局部阻尼可以使稳定状态达到更好的收敛, 这时网格将发生明显的刚性移动. 例如, 求解轴向荷载作用下桩的承载力或模拟蠕变时都可能发生. 使用SETmechanical damp combined命令来调用组合阻尼. 组合阻尼对于减小动能方面不如局部阻尼有效, 所以应注意使系统的动力激发最小化. 可以用SET mechanical damp local命令转换到默认阻尼. (6) 检查模型反应:FLAC3D 显示了一个相试的物理系统是怎样变化的. 做一个简单的试验证明你在做你认为你在做的事情. 例如, 如果荷载和实体在几何尺寸上都是对称的, 当然反应也是对称的. 改变了模型以后, 执行几个时步(假如, 5或10步), 证明初始反应是正确的, 并且发生的位置是正确的. 对应力或位移的期望值做一个估计, 与FLAC3D 的输出结果作比较. 如果你对模型施加了一个猛烈的冲击, 你将会得到猛烈的反应. 如果你对模型作了一些看起来不合理的事情, 你一定要等待奇怪的结果. 如果在分析的一个给定阶段, 得到了意外值, 那么回顾到这个阶段所用的时步. 在进行模拟前很关键的是检查输出结果. 例如, 除了一个角点速度很大外, 一切都很合理, 那么在你理解原因前不要继续下去. 这种情况下, 你可能没有给定适当的网格边界. (7) 初始化变量:在模拟基坑开挖过程时, 在达到目的前通常要初始化网格顶点位移. 因
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号