资源预览内容
第1页 / 共52页
第2页 / 共52页
第3页 / 共52页
第4页 / 共52页
第5页 / 共52页
第6页 / 共52页
第7页 / 共52页
第8页 / 共52页
第9页 / 共52页
第10页 / 共52页
亲,该文档总共52页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
窗体顶端Introduction to the Language of Kinematics Introduction Scalars and Vectors Distance and Displacement Speed and Velocity Acceleration A typical physics course concerns itself with a variety of broad topics. One such topic is mechanics - the study of the motion of objects. The first six units of The Physics Classroom tutorial will involve an investigation into the physics of motion. As we focus on the language, principles, and laws that describe and explain the motion of objects, your efforts should center on internalizing the meaning of the information. Avoid memorizing the information; and avoid abstracting the information from the physical world that it describes and explains. Rather, contemplate the information, thinking about its meaning and its applications.Kinematics is the science of describing the motion of objects using words, diagrams, numbers, graphs, and equations. Kinematics is a branch of mechanics. The goal of any study of kinematics is to develop sophisticated mental models that serve to describe (and ultimately, explain) the motion of real-world objects.In this lesson, we will investigate the words used to describe the motion of objects. That is, we will focus on the language of kinematics. The hope is to gain a comfortable foundation with the language that is used throughout the study of mechanics. We will study such terms as scalars, vectors, distance, displacement, speed, velocity and acceleration. These words are used with regularity to describe the motion of objects. Your goal should be to become very familiar with their meaning.窗体底端窗体顶端Scalars and Vectors Introduction Scalars and Vectors Distance and Displacement Speed and Velocity Acceleration Physics is a mathematical science. The underlying concepts and principles have a mathematical basis. Throughout the course of our study of physics, we will encounter a variety of concepts that have a mathematical basis associated with them. While our emphasis will often be upon the conceptual nature of physics, we will give considerable and persistent attention to its mathematical aspect.The motion of objects can be described by words. Even a person without a background in physics has a collection of words that can be used to describe moving objects. Words and phrases such as going fast, stopped, slowing down, speeding up, and turning provide a sufficient vocabulary for describing the motion of objects. In physics, we use these words and many more. We will be expanding upon this vocabulary list with words such as distance, displacement, speed, velocity, and acceleration. As we will soon see, these words are associated with mathematical quantities that have strict definitions. The mathematical quantities that are used to describe the motion of objects can be divided into two categories. The quantity is either a vector or a scalar. These two categories can be distinguished from one another by their distinct definitions: Scalars are quantities that are fully described by a magnitude (or numerical value) alone. Vectors are quantities that are fully described by both a magnitude and a direction.The remainder of this lesson will focus on several examples of vector and scalar quantities (distance, displacement, speed, velocity, and acceleration). As you proceed through the lesson, give careful attention to the vector and scalar nature of each quantity. As we proceed through other units at The Physics Classroom Tutorial and become introduced to new mathematical quantities, the discussion will often begin by identifying the new quantity as being either a vector or a scalar.Check Your Understanding1. To test your understanding of this distinction, consider the following quantities listed below. Categorize each quantity as being either a vector or a scalar. Click the button to see the answer.QuantityCategorya. 5 mThis is a scalar; there is no direction listed for it.b. 30 m/sec, EastThis is a vector; a direction is listed for it.c. 5 mi., NorthThis is a vector; a direction is listed for it.d. 20 degrees CelsiusThis is a scalar; there is no direction listed for it.e. 256 bytesThis is a scalar; there is no direction listed for it.f. 4000 CaloriesThis is a scalar; there is no direction listed for it.窗体底端窗体顶端Distance and Displacement Introduction Scalars and Vectors Distance and Displacement Speed and Velocity Acceleration Distance and displacement are two quantities that may seem to mean the same thing yet have distinctly different definitions and meanings. Distance is a scalar quantity that refers to how much ground an object has covered during its motion. Displacement is a vector quantity that refers to how far out of place an object is; it is the objects overall change in position.To test your understanding of this distinction, consider the motion depicted in the
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号