资源预览内容
第1页 / 共6页
第2页 / 共6页
第3页 / 共6页
第4页 / 共6页
第5页 / 共6页
第6页 / 共6页
亲,该文档总共6页全部预览完了,如果喜欢就下载吧!
资源描述
碳化硅(SiC)陶瓷,具有抗氧化性强,耐磨性能好,硬度高,热稳定性好,高温强度大, 热膨胀系数小,热导率大以及抗热震和耐化学腐蚀等优良特性。因此,已经在石油、化工、 机械、航天、核能等领域大显身手,日益受到人们的重视。例如,SiC陶瓷可用作各类轴承、滚珠、喷嘴、密封件、切削工具、燃汽涡轮机叶片、涡轮增压器转子、反射屏和火箭燃烧室 内衬等等。SiC陶瓷的优异性能与其独特结构密切相关。SiC是共价键很强的化合物,SiC中Si-C键的离子性仅12 %左右。因此,SiC强度高、弹性模量大,具有优良的耐磨损性能。纯SiC不会被HCI、HN03、H2SO4和HF等酸溶液以及 NaOH等碱溶液侵蚀。在空气中加热时 易发生氧化,但氧化时表面形成的Si02会抑制氧的进一步扩散,故氧化速率并不高。在电性能方面,SiC具有半导体性,少量杂质的引入会表现出良好的导电性。此外,SiC还有优良的导热性。SiC具有a和B两种晶型。3-SiC的晶体结构为立方晶系,Si和C分别组成面心立方晶 格;a- SiC存在着4H、15R和6H等100余种多型体,其中,6H多型体为工业应用上最 为普遍的一种。在SiC的多种型体之间存在着一定的热稳定性关系。在温度低于1600 C时,SiC以3 SiC形式存在。当高于 1600 C时,3 SiC缓慢转变成 a- SiC的各种多型体。 4H - SiC在2000 C左右容易生成;15R和6H多型体均需在 2100 C以上的高温才易生成; 对于6H - SiC,即使温度超过 2200 C,也是非常稳定的。SiC中各种多型体之间的自由能相差很小,因此,微量杂质的固溶也会引起多型体之间的热稳定关系变化。现就SiC陶瓷的生产工艺简述如下:一、SiC粉末的合成:SiC在地球上几乎不存在, 仅在陨石中有所发现,因此,工业上应用的SiC粉末都为人工合成。目前,合成 SiC粉末的主要方法有:1、Aches on 法:这是工业上采用最多的合成方法,即用电将石英砂和焦炭的混合物加热至2500 C左右高温反应制得。因石英砂和焦炭中通常含有Al和Fe等杂质,在制成的 SiC中都固溶有少量杂质。其中,杂质少的呈绿色,杂质多的呈黑色。2、化合法:在一定的温度下,使高纯的硅与碳黑直接发生反应。由此可合成高纯度的3-SiC粉末。3、热分解法:使聚碳硅烷或三氯甲基硅等有机硅聚合物在12001500 C的温度范围内发生分解反应,由此制得亚微米级的3- SiC粉末。4、气相反相法:使SiCI4和SiH4等含硅的气体以及 CH4、C3H8、C7H8和(CI4等含碳的气体或使 CH3SiCI3、( CH3 ) 2 SiCI2和Si (CH3 ) 4等同时含有硅和碳的气体在高温下发生反应, 由此制备纳米级的 3- SiC超细粉。二、碳化硅陶瓷的烧结1、无压烧结1974年美国GE公司通过在高纯度3 SiC细粉中同时加入少量的B和C,采用无压烧结工艺,于2020 C成功地获得高密度 SiC陶瓷。目前,该工艺已成为制备SiC陶瓷的主要方法。美国GE公司研究者认为:晶界能与表面能之比小于1 . 732是致密化的热力学条件,当同时添加B和C后,B固溶到SiC中,使晶界能降低,C把SiC粒子表面的SiO2还原除去,提高表面能,因此B和C的添加为SiC的致密化创造了热力学方面的有利条件。然而,日本研究人员却认为SiC的致密并不存在热力学方面的限制。还有学者认为,SiC的致密化机理可能是液相烧结,他们发现:在同时添加B和C的3 SiC烧结体中,有富 B的液相存在于晶界处。关于无压烧结机理,目前尚无定论。以a SiC为原料,同时添加 B和C,也同样可实现 SiC的致密烧结。研究表明:单独使用 B和C作添加剂,无助于 SiC陶瓷充分致密。只有同时添加B和C时,才能实现SiC陶瓷的高密度化。为了SiC的致密烧结,SiC粉料的比表面积应在 10m2/g以上,且氧含量尽可能低。B的添加量在0 . 5%左右,C的添加量取决于 SiC原料中氧含量高低,通常 C的添加量与SiC粉料中的氧含量成正比。最近,有研究者在亚微米 SiC粉料中加入 AI2O3和Y2O3 ,在1850 C2000 C温度下实 现SiC的致密烧结。由于烧结温度低而具有明显细化的微观结构,因而,其强度和韧性大 大改善。2、热压烧结50年代中期,美国 Norton公司就开始研究 B、Ni、Cr、Fe、AI等金属添加物对 SiC热 压烧结的影响。实验表明: AI和Fe是促进SiC热压致密化的最有效的添加剂。有研究者以AI2O3为添加剂,通过热压烧结工艺,也实现了SiC的致密化,并认为其机理是液相烧结。此外,还有研究者分别以 B4C、B或B与C, AI2O3和C、AI2O3和Y2O3、 Be、B4C与C作添加剂,采用热压烧结,也都获得了致密SiC陶瓷。研究表明:烧结体的显微结构以及力学、热学等性能会因添加剂的种类不同而异。如:当 采用B或B的化合物为添加剂,热压 SiC的晶粒尺寸较小,但强度高。当选用 Be作添加 剂,热压SiC陶瓷具有较高的导热系数。3、热等静压烧结:近年来,为进一步提高 SiC陶瓷的力学性能,研究人员进行了SiC陶瓷的热等静压工艺的研究工作。研究人员以 B和C为添加剂,采用热等静压烧结工艺,在1900 C便获得高密度SiC烧结体。更进一步,通过该工艺,在2000 C和138MPa压力下,成功实现无添加剂SiC陶瓷的致密烧结。研究表明:当 SiC粉末的粒径小于0 . 6m时,即使不引入任何添加剂,通过热等静压 烧结,在1950 C即可使其致密化。如选用比表面积为24m2 / g的SiC超细粉,采用热等静压烧结工艺,在 1850 C便可获得高致密度的无添加剂SiC陶瓷。另外,A12O3是热等静压烧结 SiC陶瓷的有效添加剂。而 C的添加对SiC陶瓷的热等静 压烧结致密化不起作用,过量的 C甚至会抑制SiC陶瓷的烧结。4、反应烧结:SiC的反应烧结法最早在美国研究成功。反应烧结的工艺过程为:先将a SiC粉和石墨粉按比例混匀,经干压、挤压或注浆等方法制成多孔坯体。在高温下与液态Si接触,坯体中的C与渗入的Si反应,生成3 SiC,并与a SiC相结合,过量的Si填充于气孔,从 而得到无孔致密的反应烧结体。反应烧结SiC通常含有8 %的游离Si。因此,为保证渗 Si的完全,素坯应具有足够的孔隙度。一般通过调整最初混合料中a SiC和C的含量,aSiC的粒度级配,C的形状和粒度以及成型压力等手段来获得适当的素坯密度。实验表明,采用无压烧结、热压烧结、热等静压烧结和反应烧结的SiC陶瓷具有各异的性能特点。如就烧结密度和抗弯强度来说,热压烧结和热等静压烧结SiC陶瓷相对较多,反应烧结SiC相对较低。另一方面,SiC陶瓷的力学性能还随烧结添加剂的不同而不同。 无 压烧结、热压烧结和反应烧结SiC陶瓷对强酸、强碱具有良好的抵抗力,但反应烧结SiC陶瓷对HF等超强酸的抗蚀性较差。就耐高温性能比较来看,当温度低于900 C时,几乎所有SiC陶瓷强度均有所提高;当温度超过1400 C时,反应烧结SiC陶瓷抗弯强度急剧下降。(这是由于烧结体中含有一定量的游离Si,当超过一定温度抗弯强度急剧下降所致)对于无压烧结和热等静压烧结的SiC陶瓷,其耐高温性能主要受添加剂种类的影响。总之,SiC陶瓷的性能因烧结方法不同而不同。一般说来,无压烧结 SiC陶瓷 的综合性能优于反应烧结的 SiC陶瓷,但次于热压烧结和热等静压烧结的SiC陶瓷。氧化铝的用途产品名称主要品种主要用途普通氢氧化铝联合法氢氧化铝氟化盐、净水剂拜尔法氢氧化铝氟化盐、净水剂、活性氧化铝特种氢氧化铝白色氢氧化铝阻燃剂、填料超白氢氧化铝人造玛瑙、人造石超细氢氧化铝电缆、化妆品、纸张填料低铁氢氧化铝特种玻璃、人造玛瑙低钠氢氧化铝催化剂载体活性氧化铝活性氧化铝微粉耐火材料结合剂柱状活性氧化铝催化剂、干燥剂、净化剂球状活性氧化铝催化剂、干燥剂、吸附剂高纯氧化铝高纯氧化铝钠灯管、荧光粉冋温氧化铝低钠咼温氧化铝电子陶瓷、精细陶瓷中钠高温氧化铝结构陶瓷低钠咼温氧化铝超细 微粉电子陶瓷、精细陶瓷、耐火材料中钠高温氧化铝超细 微粉结构陶瓷、耐火材料抛光研磨氧化铝不锈钢抛光研磨电工氧化铝高压开关环氧树脂绝缘件填料拟薄水铝石普通拟薄水铝石催化剂、粘结剂特种拟薄水铝石催化剂、粘结剂沸石4A沸石洗涤助剂10X沸石催化剂铝酸钠铝酸钠溶液氟化盐固体铝酸钠催化剂、凝聚剂纯铝酸钙水泥纯铝酸钙水泥耐火材料结合剂氧化铝陶瓷结构陶瓷研磨介质精细陶瓷机械零件陶瓷原料主要来自岩石,而岩石大体都是由硅和铝构成的。陶瓷也是用这类岩石作原料,经过人工加热使之坚固,很类似火成岩的生成。因此从化学上来说,陶瓷的成分与岩石的成分没有什么 大的区别。如果是硅和铝所构成的陶瓷,其主要原料有以下几种:1、 石英一一化学成分是纯粹的二氧化硅(SiO2),又名硅石。这种矿物即使碎成细粉也无粘性,可用来弥补陶瓷原料过粘的缺点。在780C以上时便不稳定而变成鳞石英,在1730C时开始熔融。2、长石一一是以二氧化硅及氧化铝为主,又夹杂钠、钾、钙等的化合物。因其所含分量多寡不同,又有许多种类。一般有将含长石较多的岩石叫作长石的,也有以它的产地来命名的。现在把 长石中具有代表性的几种和它们的成分列于表1。其中前三种是纯粹的理论成分,后一类则含有岩石中所有的不纯物质。钠长石与钙长石以各种比例互相熔解,变成多种多样的长石。这些总称为“斜长石”,它的性质依其中所含钠长石与钙长石的比例而定。还有一种和正长石 (钾长石)为同样成分而形状稍有变异的,至今也多误传为正长石,其实这种应该叫做“微斜长石”。3、瓷土(又名“高岭土”)一一瓷土( H4AI2Si2O9 )是陶瓷的主要原料。它是以产于世界第一窑厂的中国景德镇附近的高岭而得名的。后来由“高岭”的中国音演变为“ Kaolin ”, 而成为国际性的名词。纯粹的瓷土是一种白色或灰白色,有丝绢般光泽的软质矿物。瓷土是由云母和长石变质,其中的钠、钾、钙、铁等流失,加上水变化而成的, 这种作用叫作“瓷土化”或“高岭土化”。至于瓷土化究竟因何而起,在学术界中虽然还没有定论,但大略可以认为是长石类由于温泉或含有碳酸气的水以及沼地植物腐化时所生的气体起作用变质而成的。一般瓷土多产于温泉附近或石灰层周围,可能就是这个原因。瓷土的熔点约在1780C左右,实际上因为多少含有不纯物质,所以它的熔点略为降低。纯粹的瓷土(高岭土)存量不多,而且所谓纯粹的瓷土,也没有黏土那样强的粘度。一般所说的瓷土如果放在显微镜下面来观察,大部分带有白色丝绢状的光泽,银光闪闪,是非常小的结晶,这就是所谓纯粹的瓷土。此外,还含有未变质的长石、石英、铁矿及其他作为瓷土来源的岩石的 碎片。纯粹瓷土的成分是:SiO2 46.51%,AI2O3 39.54%,H2O 13.95%,熔度为 1780C。陶瓷中最高级的是瓷器。作瓷器用的岩石究竟以哪样最好?由于瓷器必须是白色。因而就不得不极力避免含有使陶瓷着色的铁分。含铁少而以氧化硅及氧化铝为主要成分的岩石有:花岗岩、花
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号