资源预览内容
第1页 / 共6页
第2页 / 共6页
第3页 / 共6页
第4页 / 共6页
第5页 / 共6页
第6页 / 共6页
亲,该文档总共6页全部预览完了,如果喜欢就下载吧!
资源描述
H型双极模式PWM控制的功率转换电路设计H型双极模式PWM控制提高转台伺服系统低速特性的作用十分显著,而且简单易 行。H型双极模式PWM控制能够提高伺服系统的低速特性,是因为H型双极模式PWM 控制的电动机电枢回路中始终流过一个交变的电流,这个电流可以使电动机发生高频颤动, 有利于减小静摩擦,从而改善伺服系统的低速特性。但因其功率损耗大,H型双极模式PWM 控制只适用于中、小功率的伺服系统。因此,有必要设计一种能够减小功率损耗的H型双 极模式PWM控制的功率转换电路,使得H型双极模式PWM控制应用在大功率伺服系统 中。H型双极模式PWM控制的功率损耗如图1所示,H型双极模式PWM控制一般由4个大功率可控开关管(V 1-4)和4 个续流二极管(VD 1-4)组成H桥式电路。4个大功率可控开关管分为2组,V1和V4为 一组,V2和V3为一组。同一组的两个大功率可控开关管同时导通,同时关闭,两组交替 轮流导通和关闭,即驱动信号u1 = u4,u2 = u3 = -u1,电枢电流的方向在一个调宽波周期 中依次按图1中方向1、2、3、4变化。由于允许电流反向,所以H型双极模式PWM控 制工作时电枢电流始终是连续的。电枢电流始终连续产生电动机的附加功耗、大功率可控开 关管咼频开通关闭产生的导通功耗和开关功耗等动态功耗,是H型双极模式PWM控制功 率损耗的主要来源。决定电动机附加功耗大小的因素主要是PWM的开关频率,开关频率越 大附加功耗就越小。决定大功率可控开关管的动态功耗大小的因素主要是大功率可控开关管 的开通关闭时间和PWM的开关频率,开通关闭时间越长动态功耗就越大,PWM开关频率 越大动态功耗就越大。图1H型双极模式PWM控制原理图电枢回路的附加功耗、大功率可控开关管的动态损耗,使得H型双极模式PWM 控制的功率损耗很大、不适合应用在大功率伺服系统中。为了解决这个问题,本文将以减小 电动机电枢回路的附加功耗和大功率开关管的动态功耗为原则,设计H型双极模式PWM 控制的功率转换电路,以使H型双极模式PWM控制应用在大功率伺服系统中。H型双极模式PWM控制的功率转换电路设计设计H型双极模式PWM控制的功率转换电路的核心是:功率转换器件的选取及 其驱动电路设计、保护电路的设计。功率转换器件常用的大功率可控开关管主要有大功率双极型晶体管(GTR)、大功率电力场效应 管(MOSFET)和IGBT等。GTR的主要缺点是:开通关闭时间长、开关功耗大、工作频率 低、热稳定性差、容易损坏。MOSFET的主要缺点是:管子导通时通态压降比较大、管子 功率损耗大。绝缘栅双极晶体管IGBT(Isolated Gate Bipolar Transistor)集GTR和 MOSFET的优点于一身,既具有通态电压低、耐高压、承受电流大、功率损耗低的特点, 又具有输出阻抗高、速度快、热稳定性好的特点。因此,IGBT具有广阔的工程应用前景。本文的功率转换电路采用2MB1300D-140型号的IGBT作为功率转换器件,其 示意图如图2中右侧所示,G是栅(门)极、C极是集电极、E极是发射极。IGBT驱动条件 与IGBT特性的关系经实验测得如表1所示,其中Vces、ton、toff、Vce、R分别为集电 极-发射极饱和压降、开通时间、关闭时间、集电极-发射极电压和栅极电阻,f、-、(分 别表示增大、不变、减小。从表1可以看出: 增大正向栅压+Vge, Vces和ton随之减小,IGBT的动态功耗随之减小; 增大反向栅压-Vge, toff随之减小,IGBT的动态功耗随之减小; 增大R,IGBT的ton、toff随之增大,IGBT的动态功耗随之增大。表1IGBT驱动条件与IGBT特性的关系特性hhf苗 电电流-卩沪1弋J. 1r工-% - - _ 4A因此,减小IGBT的动态功耗,需要增大正向栅压+Vge、增大反向栅压-Vge、 减小ton和toff。但Vge并非越高越好,原因是Vge过高时电流增大,容易损坏IGBT。 一般+Vge不超过+20V。IGBT关断期间,由于电路中其它部分的干扰,会在栅极G上产 生一些高频振荡信号,这些信号轻则会使本该关闭的IGBT处于微通状态、增加IGBT的功 耗,重则会使逆变电路处于短路直通状态,为了防止这些现象发生反向栅压-Vge越大越好。 根据上述关系可以总结,IGBT对驱动电路的要求主要有:动态驱动能力强、正向和反向栅 压合适、输入输出电隔离能力强、输入输出信号传输无延时、具有一定保护功能。为了减小IGBT的动态功耗和保障电路安全,满足IGBT的驱动要求,需合理确 定+Vge、-Vge和R的值。这些都需要通过设计驱动电路来实现。驱动电路设计设计性能良好的驱动电路,可以使IGBT工作在比较理想的开关状态、缩短开关 时间、减小开关功耗、提高功率转换电路的运行效率oIGBT栅极驱动方式主要有变压器驱 动法、直接驱动法和光耦隔离驱动法。变压器驱动法有利于驱动信号的隔离、驱动功率损耗 很小,但限制了使用频率,不利于PWM信号的传输。直接驱动法适用于小容量的不加保护 的IGBT的场合。光耦隔离驱动法对光耦的要求较高,要求光耦速度快,绝缘耐压高于电源 电压,共模抑制比大。SEMIKRON公司的SKHI22AH4模块是应用变压器驱动原理的驱动器件。当 SKHI22AH4模块驱动IGBT时,它的最大工作频率可达100kHz,完全解决了限制使用 频率问题。SKHI22AH4模块驱动IGBT的电路原理图如图2。图2中虚线方框是SKHI22AH4模块结构简图,模块中分初级和次级两个部分,这两个部分是绝缘的,使得 驱动电路具有良好的输入输出电隔离能力;模块有2个in put、2个output, 个in put对 应一个output, input是变压器初级,output是变压器次级;SKHI22AH4模块中还有针 对短路、过流和电压不稳等错误的测量装置和错误信息储存装置,用来实现多种电路保护功 能。SKHI22AH4模块的工作原理是:PWM控制信号加在变压器初级,变压器次级输出放 大的驱动信号驱动IGBT。SKHI22AH4模块的供电电压是+15V,当其驱动 2MB1300D-140型号的IGBT时,其驱动输出的导通电压可达+14.2V、关闭电压可达 -2V,完全满足减小IGBT动态功耗对+Vge、-Vge的要求。为了减小ton、toff,在允许 的范围内取Ron = 3.38,Roff=3.38。在力求减小功率损耗的原则下,在设计电路保护功 能过程中选择其外围元器件。IM1-帰 -二 I图2SKHI22AH4模块驱动IGBT的原理图SKHI22AH4的主要电路保护功能设计:1)短路保护功能在C极和E极间容易出现短路的现象。短路时,电流增大,IGBT的功率损耗迅 速增大(随着电流的平方增大),严重时会造成IGBT的损坏。因此,需要对IGBT进行短路 保护。如图2所示,通过对C极和E极的电压的比较,就实现了对C极和E极间的短路保 护。实现短路保护,就要合理确定Rce和Cce的值。具体步骤如下: 确定Vces的值。Vces既不能过大也不能过小,过大会增加IGBT动态功率损 耗,过小会减弱短路保护能力,一般取5.6V。为了减小IGBT的动态功率损耗,可以适当 减小,但不能小于3.5V。这里取Vces=4V。 确定Rce。由公式(1)求得Rce=13Q。 确定tmin。由SKHI22AH4模块的特性知,tmince=470pF。ICFb; 259-f-. UUjLIO-1肌10+2)互锁保护功能SKHI22AH4模块具有互锁功能,以防止H桥同侧臂的2个IGBT同时导通。互 锁功能就是:在H桥同侧臂的2个IGBT中,一个IGBT关闭后要有一段延时,另一个IGBT 才能开通。互锁的锁定时间ttd = 2.7+0.13Rtd(Rtd为互锁电阻),2.7ps是由于 SKHI22AH4模块中已经集成了一个互锁电阻产生。取Rtd = 08,则ttd = 2.7ps。3)错误监测SKHI22AH4模块具有错误监测功能,它可以对短路、过流、电压不稳等错误进 行监测。当错误发生时,SKHI22AH4模块停止运行,并将错误信号存储在Error memo ry 中,直到错误排除,才能从新运行。按照上述驱动电路设计,可得SKHI22AH4模块的驱动波形,如图3所示。r l n则會出和m图3SKHI22AH4模块输入输出的波形图H型双极模式PWM控制的功率转换电路经过上述设计,得H型双极模式PWM控制的功率转换电路原理图,如图4所示。 经实验测试得,图4所对应的功率转换电路中IGBT的ton = 1.8Ls、toff=1.4Ls,则IGBT 的开关时间为3.2LS。图4H型双极模式PWM控制的功率转换电路原理图实验设计完H型双极模式PWM控制的功率转换电路后,还要确定合理的PWM开关 频率,才能进一步减小功率损耗、实现H型双极模式PWM控制在大功率伺服系统中的应 用。PWM 开关频率的计算合理的开关频率不但可以进一步减小功率损耗、提咼效率,而且还可以使系统性 能与连续系统的性能相差无几。综合来看,开关频率的确定,受到很多相互矛盾的因素决定:为了改善静摩擦对伺服系统低速性能的影响、使得电动机在零位处于动力润滑 状态,因此双极模式PWM控制工作时考虑微振特性的开关频率应满足公式(4); 为了使开关频率不至于对系统的动态性能产生不良影响,频率应远大于伺服系统本 身的通频带fc, 一般应满足经验式(5); 为了避免引起共振,开关频率应该高于系统中所有回路的谐振频率; 为了提高电动机的利用率,必须限制电流脉动量$Ia,应该满足式(6); 开关频率的上限要受到IGBT的开关损耗和开关时间的限制,应满足经验式 。(4)(7).Ergf (W-ion 卡 JcfiEa Ra以某三轴飞行仿真转台方位轴伺服系统为例进行计算,该转台是我们目前国内功 率最大的转台之一,功率为11000W,其中方位轴伺服系统的功率为7200W。三轴飞行 仿真转台方位轴电动机参数如下:力矩系数KT=82.3N?m/A,供电电压Us= + 120V,电 枢电阻Ra = 2.48Q,电枢电感La = 0.019H,电机轴上静摩擦力矩Tf=21010N?m,系统 通带频率fc=34Hz,额定电流IN = 60A,启动电流IsIN, as=Is/IN,Te=La/Ra=0.0079。由式(4)(7)确定开关频率范围340HzPe = E価 砧: 話仃才十0.阴2仙)1井T3D+ 0.0 2館弋T(8)图5功率损耗曲线试验结果在某三轴飞行仿真转台方位轴伺服系统中采用可逆单极模式PWM控制时,方位 轴伺服系统的能够启动的最低平稳速度为0.05/s;而采用了本文设计的功率转换电路的H 型双极模式PWM控制时,能够启动的最低平稳速度为0.01/s,如图6所示(横坐标轴为 采样点,采样频率400Hz),方位轴伺服系统的低速特性得到了明显的提高。图6某三轴转 台方位轴伺服系统的启动速度曲线由于电枢电流有脉动量,电动机会有高频颤动,系统的最 低平稳速度随之也有脉动;但脉动量很小,小于0.00025/s,仅为速度值2.5%。结论本文设计的H型双极模式PWM控制的功率转换电路,减小了双极模式PWM控 制的功率损耗;通过计算合理的开关频率,功耗进一步减小。使得H型双极模式PWM控制 应
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号