资源预览内容
第1页 / 共15页
第2页 / 共15页
第3页 / 共15页
第4页 / 共15页
第5页 / 共15页
第6页 / 共15页
第7页 / 共15页
第8页 / 共15页
第9页 / 共15页
第10页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
福建师范大学21秋复变函数复习考核试题库答案参考1. 设区域D为:由以点为顶点的四边形与以点, 为顶点的三角形合成,随机变量(X,Y)在D上服从均匀分布,求关于X、Y的设区域D为:由以点为顶点的四边形与以点,为顶点的三角形合成,随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘概率密度2. 试证明一棵二元完全树必有奇数个结点试证明一棵二元完全树必有奇数个结点方法一:设二元完全树T有n个结点,m条边依定义,T中每个分支结点都关联两条边,所以m必为偶数又因为T是树,有n=m+1,故n为奇数,因此二元完全树必有奇数个结点 方法二:设二元完全树T有n个结点,l片叶子,b个分支结点,则有n=l+b及b=l-1,所以n=l+b=l+l-1=2l-1,即n为奇数本题可根据二元完全树的特点,树和图中边、结点的关系,经综合考虑得出结论。 3. 复合函数y=sin2(2x+5)是由哪些简单函数复合而成的?复合函数y=sin2(2x+5)是由哪些简单函数复合而成的?函数是由y=u2,u=sinv,v=2x+5复合而成的4. 若fL(X),则( )A.f在X上几乎处处连续B.存在gL(X)使得|f|=gC.若Xfdu=0,则f=0,a.e.参考答案:B5. (x-c)2+(y-c)2=4 求曲线族的包络,并绘出图形:(x-c)2+(y-c)2=4 求曲线族的包络,并绘出图形:由(x-c)2+(yc)2=4,2c=x+y,得(x-y)2=8 见图3.14 6. ,其中D是由直线x=0,y=和y=x所围成的区域,其中D是由直线x=0,y=和y=x所围成的区域积分区域D如图8.24所示,0y,0xy 7. 若f(x)dx=F(x)+C,则e-xf(e-x)dx=( ) AF(ex)+C B-F(e-x)+C CF(e-x)+C D若f(x)dx=F(x)+C,则e-xf(e-x)dx=()AF(ex)+CB-F(e-x)+CCF(e-x)+CDBe-xf(e-x)dx=-f(e-x)d(e-x)=-F(e-x)+C8. 设函数f(x)=x.tanx.emin,则f(x)是( )A偶函数B无界函数C周期函数D单调函数设函数f(x)=x.tanx.emin,则f(x)是( )A偶函数B无界函数C周期函数D单调函数正确答案:B由于,故f(x)无界,或考察f(x)在xn=的函数值,有,可见f(x)是无界函数,故应选B9. 已知(2x)x2a(x1)b(x1)2(x1),求a,b的值。已知(2x)x2a(x1)b(x1)2(x1),求a,b的值。正确答案:解 令 x1tx1t0rn解令x1t,x1,t010. 设0P(A)1,0P(B)1,则下列选项成立的是( ) A事件A和B互不相容 B事件A和B互相对立 C事件A和B互不设0P(A)1,0P(B)1,则下列选项成立的是()A事件A和B互不相容B事件A和B互相对立C事件A和B互不独立D事件A和B相互独立D11. 判断下列级数的敛散性:(1)_;(2)_; (3)_;(4)_;(5)_。判断下列级数的敛散性:(1)_;(2)_;(3)_;(4)_;(5)_。收敛$发散$发散$发散$收敛12. 一曲边梯形由曲线y=2x2+3,x轴及x=-1,x=2所围成,试列出用定积分表示该曲边梯形的面积表达式一曲边梯形由曲线y=2x2+3,x轴及x=-1,x=2所围成,试列出用定积分表示该曲边梯形的面积表达式S=-12(2x2+3)dx13. 设随机变量(,)在区域(x,y):axb,cyd内服从均匀分布,求:设随机变量(,)在区域(x,y):axb,cyd内服从均匀分布,求:区域D的面积A=(b-a)(d-c),所以(,)的联合分布密度为 $ 14. 设P(A)=P(B)=0.4,P(AB)=0.28,则P(AB)=_;P(B|A)=_设P(A)=P(B)=0.4,P(AB)=0.28,则P(AB)=_;P(B|A)=_0.52$0.715. 关于函数的连续性、可微性的正确结论是( ) A除两个点是第一类间断点外处处连续可导 Bf(x)在(-,+)连关于函数的连续性、可微性的正确结论是()A除两个点是第一类间断点外处处连续可导Bf(x)在(-,+)连续,仅有一个不可导点Cf(x)在(-,+)连续,仅有两个不可导点Df(x)处处可导C16. 证明:若函数f(x)在点x0处有f+(x0)0(0),f-(x0)0(0),则x0为f(x)的极大(小)值点。证明:若函数f(x)在点x0处有f+(x0)0(0),f-(x0)0(0),则x0为f(x)的极大(小)值点。正确答案:由题干中所给出的条件存在0f在(x0-x0)内递减(增)在(x0x0+)内递增(减)。rn故对任意xU(x0;)恒有f(x)f(x0)(f(x0)故f(x)在x0处取得极大(小)值。由题干中所给出的条件,存在0,f在(x0-,x0)内递减(增),在(x0,x0+)内递增(减)。故对任意xU(x0;),恒有f(x)f(x0)(f(x0),故f(x)在x0处取得极大(小)值。17. 试证试证(sinh z)=cosh z;(cosh z)=sinh z试证(sinh z)=cosh z;(cosh z)=sinh z正确答案:18. 证明:函数F(x,y,z)在点P0(x0,y0,z0)处的梯度向量是函数F(x,y,z)在点P0(x0,y0,z0)处的等位面的法证明:函数F(x,y,z)在点P0(x0,y0,z0)处的梯度向量是函数F(x,y,z)在点P0(x0,y0,z0)处的等位面的法向量正确答案:19. 求方程x2ydx=(1y2x2x2y2)dy的通解求方程x2ydx=(1-y2+x2-x2y2)dy的通解20. 设随机变量X的分布律为 X 0 p 0.4 r 0.1设随机变量X的分布律为X0p0.4r0.1且E(X)=0,D(X)=2,试求待定系数,r,其中由离散型随机变量分布律的性质得1=0.4+r+0.1r=0.5 又由数学期望与方差的定义得 E(X)=0=0.4+00.5+0.10.4+0.1=0=-4, D(X)=2=0.4(-0)2+0.5(0-0)2+0.1(-0)20.42+0.12=2,解得=1,=4 又,故=-1,=4,r=0.5小结随机变量的分布律(或概率密度)的性质、数学期望和方差的定义在确定待定系数的题目中经常用到,要灵活掌握三者之间的相互转化关系 21. 设1,2,s均为n维向量,下列结论不正确的是A若对于任意一组不全为零的数k1,k2,ks,都有k11设1,2,s均为n维向量,下列结论不正确的是A若对于任意一组不全为零的数k1,k2,ks,都有k11k22kss0,则1,2,s线性无关B若1,2,s线性相关,则对于任意一组不全为零的数k1,k2,ks,都有k11k22kss0C1,2,s线性无关的充分必要条件是此向量组的秩为sD1,2,s线性无关的必要条件是其中任意两个向量线性无关正确答案:B22. 不存在这样的函数f:在区间a,b上增且使得f&39;(x)在a,b上积分值fdx。( )A.正确B.错误参考答案:B23. 当拉格朗日中值定理中,f(x)满足_时,即为罗尔定理当拉格朗日中值定理中,f(x)满足_时,即为罗尔定理正确答案:f(a)f(b)f(a)f(b)24. 设有任意两个n维向量组1,m和1,,m,若存在两组不全为零的数1,m和k1,km,使(1+k1)1+(m+km)m设有任意两个n维向量组1,m和1,,m,若存在两组不全为零的数1,m和k1,km,使(1+k1)1+(m+km)m+(1-k1)1+(m-km)m=0,则()A1,m和1,m都线性相关B1,m和1,m都线性无关C1+1,m+m,1-1,m-m线性无关D1+1,m+m,1-1,m-m线性相关D25. 试证明: 设,且m*(A),m*(B),则 |m*(A)-m*(B)|m*(AB);试证明:设,且m*(A),m*(B),则|m*(A)-m*(B)|m*(AB);证明 因为,所以m*(A)m*(B)+m*(AB).从而可知m*(A)-m*(B)m*(AB).类似地,又可得m*(B)-m*(A)m*(AB)综合此两结论,即得所证26. 设X为随机变量,E(X)=,D(x)=2,当( )时,有E(Y)=0,D(Y)=1 AY=X+ BY=X- C D设X为随机变量,E(X)=,D(x)=2,当()时,有E(Y)=0,D(Y)=1AY=X+BY=X-CDC27. 指出下列点集的内点、边界点、聚点,并说明是否是有界集、连通集、开区域、闭区域。指出下列点集的内点、边界点、聚点,并说明是否是有界集、连通集、开区域、闭区域。(1)E中的任一点都是点集E的边界点;点集E没有内点;x轴上的点,y轴上的点都是E的聚点;E是有界集;集合E不是区域、闭区域,也不是连通集。$(2)集合F中除点(1,0)外的任一点(x,y)都是F的内点;圆周x2+y2=1与(x-2)2+y2=1上的点和点(1,0)都是F的边界点;F的每一个点都是F的聚点;F是有界集,连通集;但不是区域(1,0)不是F的内点),也不是闭区域$(3)G中的任何一个点(x,y)都是G的内点;(0,0)点是G的边界点;全平面R2上任一点(x,y)都是G的聚点;G是无界集,连通集;G是区域,但不是闭区域。28. 若f(u)可导,且y=f(esinx),则有( )
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号