资源预览内容
第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
第4页 / 共5页
第5页 / 共5页
亲,该文档总共5页全部预览完了,如果喜欢就下载吧!
资源描述
课时作业(二十九)B第29讲等比数列时间:35分钟分值:80分12012厦门外国语月考 已知数列an是由正数组成的等比数列,Sn表示an的前n项的和若a13,a2a4144,则S10的值是()A511 B1023 C1533 D306922011大连模拟 在等比数列an中,若a2a3a6a9a1032,则的值为()A4 B2 C2 D432011抚州二模 等比数列an的前n项和为Sn,若S1,S3,S2成等差数列,则数列an的公比等于()A1 B. C D.42011汕头期末 在ABC中,tanA是以4为第三项,4为第七项的等差数列的公差,tanB是以为第三项,9为第六项的等比数列的公比,则tanC_.52011新余二模 已知等比数列an的前n项和为Sn,且a20113S20102012,a20103S20092012,则公比q等于()A3 B. C4 D.62011巢湖一检 在等比数列an中,a14,公比为q,前n项和为Sn,若数列Sn2也是等比数列,则q等于()A2 B2 C3 D372011丰台一模 设等差数列an的公差d0,a14d.若ak是a1与a2k的等比中项,则k()A3或1 B3或1C3 D182011琼海一模 在数列an中,an1can(c为非零常数),前n项和为Sn3nk,则实数k为()A0 B1 C1 D292011东莞调研 在等比数列an中,a11,且a11,a22,a32依次成等差数列,则an的前6项和等于_102011盐城二模 已知公差不为零的等差数列an满足a1,a3,a9成等比数列,Sn为数列an的前n项和,则的值是_112011福州质检 在等比数列an中,首项a1,a4(12x)dx,则公比q为_12(13分)2011烟台二诊 设数列an的前n项和为Sn,且Sn(1)an,其中是不等于1和0的常数(1)证明:an是等比数列;(2)设数列an的公比qf(),数列bn满足b1,bnf(bn1)(nN,n2),求数列的前n项和Tn.13(12分)2011汕头一模 设数列an为等比数列,数列bn满足:bnna1(n1)a22an1an,nN*,已知b1m,b2,其中m0.(1)求数列an的首项和公比;(2)当m1时,求bn;(3)设Sn为数列an的前n项和,若对于任意的正整数n,都有Sn1,3,求实数m的取值范围课时作业(二十九)B【基础热身】1D解析 由已知a2a4144,得a1qa1q3144,则q416,即q2,S103069.2B解析 根据等比数列的性质,有a2a10a3a9a,又已知a2a3a6a9a1032,则a32,即a62,a1q52,a1q52.3C解析 由已知S1,S3,S2成等差数列,得2S3S1S2,即2(a1a1qa1q2)a1a1a1q,化简,得2a1(1qq2)a1(2q),即2q2q0,解得q.41解析 由已知,有解得tanCtan(AB)1.【能力提升】5C解析 由已知,有a20113S20102012,a20103S20092012,两式相减,得a2011a20103a2010,即a20114a2010,则公比q4.6C解析 由已知,有S1a14,S2a1a24(1q),S3a1a2a34(1qq2),因为数列Sn2是等比数列,所以(S22)2(S12)(S32),即(4q6)26(64q4q2),解得q3.7C解析 由数列an是等差数列,得aka1(k1)d,a2ka1(2k1)d.ak是a1与a2k的等比中项,aa1a2k,即a1(k1)d2a1a1(2k1)d,化简,得(k1)2d2a1d0.把a14d代入,得k3.8C解析 解法一:由Sn3nk,得a1S13k,a2S2S1(32k)(3k)6,a3S3S2(33k)(32k)18.由an1can(c为非零常数),知数列an是等比数列,则aa1a3,即6218(3k),解得k1.解法二:由题意知,数列an是公比为c的等比数列,且c0,c1.设t,则Sntqnt3nk,kt1.963解析 设等比数列an的公比为q,则a2q,a3q2,由a11,a22,a32依次成等差数列,得2(a22)(a11)(a32),即2(q2)(11)(q22),化简,得q22q0,解得q2.则数列an的前6项和为S663.103解析 设等差数列的公差为d(d0),由a1,a3,a9成等比数列,得aa1a9,即(a12d)2a1(a18d),化简,得a1d.3.113解析 a4(12x)dx(xx2)(442)(112)18,又a4a1q3,a1,则q327,即q3.12解答 (1)证明:Sn(1)an,Sn1(1)an1(n2),ananan1,即(1)anan1.又1且0,.又a11,an是以1为首项,为公比的等比数列(2)由(1)知qf(),bnf(bn1)(n2),故有1,1(n2),是以3为首项,1为公差的等差数列Tn3n.【难点突破】13解答 (1)由已知b1a1,所以a1m;b22a1a2,所以2a1a2m,解得a2;所以数列an的公比q.(2)当m1时,ann1,bnna1(n1)a22an1an,bnna2(n1)a32anan1,得bnna2a3anan1,所以bnnn,bnn.(3)Sn,因为1n0,所以由Sn1,3得,注意到,当n为奇数时,1n;当n为偶数时,1n,所以1n的最大值为,最小值为.对于任意的正整数n都有,所以2,解得2m3.
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号