资源预览内容
第1页 / 共13页
第2页 / 共13页
第3页 / 共13页
第4页 / 共13页
第5页 / 共13页
第6页 / 共13页
第7页 / 共13页
第8页 / 共13页
第9页 / 共13页
第10页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
读数复现 编演发展人教版初中数学七年级上册有理数全章复习课设计期末考试临近,老师们都忙于复习,忙于在网上查找各类题目,可谓“搜肠刮肚”,使出浑身解数,大有穷尽所有题目之势,不厌其烦地遴选印发讲解,学生遨游题海,陷于令学生生厌的灰色情调中.师生都高负荷运转,老师忙得昏天黑地,学生累得怨声载道.每每至此,笔者都动一番脑筋,试图跳出这个“年年岁岁花相似”的怪圈,退居后台细细斟酌,该如何帮助孩子松绑卸重,走出题山书海,又能提高学生的兴趣与质量.基于这样的思考,心怀“PISA测试”的启示,以有理数章节复习为切入点,特做了如下复习课的尝试:一、读数导引,概念再现.(设计意图:把概念蕴藏于每一个数中,在学生读数的同时,笔者意图通过适时的插言唤起学生处于休眠状态的记忆,在互动中复现概念,从多个角度认识概念,把冰冷的“数符”赋予火热的思考,枯燥乏味变十足情趣.)师(不声不响,板书课题):玩转几个“数”!生:(弄不清老师葫芦里卖的什么药,惊讶的神态中透着好奇.)师:(继续板书):-3、+4师:这两个数怎么读?生(脱口而出):负三、正四师:由此我们想到哪几个相关概念?生(七嘴八舌):什么是负数、正数、有理数师:说得好,这三个概念是本章的奠基概念,谁能谈谈对它们的认识?生1:负数就是比0小的数,正数就是比0大的数生2:正号可以省略,而负号不行;正数前面加负号就是负数;生3:有理数可分成正有理数、负有理数和0生4:也可分成负数和非负数;正数和非正数生5:也可分成整数和分数生6:有理数就是有限小数或无限循环小数师:同学们认识比较到位、全面,很好!师(板书):-(-5)怎么读?生:负的负5、负5的相反数师:一个是按外形读的,一个是按意义读的,由此,我们读出了哪一概念?生:相反数师:对,相反数,这可是一个非常重要的概念,谁来说说对它的认识?生6:只有符号不同的两个数,是相反数;生7:和为0的两个数,是相反数;生8:商为-1的两个数,是相反数;生9(抢着补充):0除外生10:表示一个数的相反数就是在它的前面放一个负号;生11:一对相反数若标在数轴上,它们离原点的距离相等;生12:应该是它们所处的位置离原点的距离相等;生13:相反数等于自身的数只有一个0师:同学们从多个角度谈了对相反数的认识,非常深刻,其中谈到一个概念是数轴,谁谈一下对数轴的见解?生14:数轴就是一条带有原点、正方向、单位长度的直线生15:利用数轴能把数标在上面,并能看出数的大小生16:任何一个有理数都能表示在数轴上, 师:数轴是实现“数”与“形”结合的重要工具,我们可要重视哦!.师(板书):读作什么?生:的绝对值师:由此我们想到了概念生:绝对值师:哪谁能谈谈对绝对值的认识?生17:它就是一个数表示的点离开原点的距离生18:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0;生19:相反数的绝对值相等生20:绝对值等于自身的数是非负数生21:一个数的绝对值是一个非负数生22:相反数的绝对值相等,绝对值相等的两个数可能相等,也可能相反师:从概念到性质,梳理的井井有条,说明同学们对绝对值有了一定的认识师:该怎么读?生:负3分之一、负3的倒数师:由此出现了哪一概念生:倒数师:倒数的知识你知道多少?生23:1除以一个数的商就是这个数的倒数生24:零除外生25:两数的乘积为1,这两个数互为倒数生26:倒数等于自身的数为生27:倒数使除法运算变成了乘法:除以一个数等于乘以这个数的倒数师:同学们集思广益,赐予了我们这些共同财富,希望能变成自己的东西.师(板书2.5104):怎么读?能让我们想到什么?生28:读作2点5乘以10的四次幂,能想到科学记数法生29:也可以理解成2.5万生30:对,它就是25000生31(优秀生):若它是一个近似数的话,它的有效数字就是2和5两个,它精确到千位,生32:不对,他精确到十分位生有争议,意欲征求老师的意见师:这个问题先请两个代表说明一下自己为什么这样认识,好吗?生33:小数点后的第一位就是十分位,它的后两位是百分位,依次推下去,千分位,万分位因此,我认为是十分位生34:你说的是2.5这个数,而现在的数是2.5104,它相当于2.5万,也就是两万五千,其中的2指的是2万,而此处的5并不是0.5,而是表示5千,明白吧?生35(挠挠头,嘟囔):也是,我怎么没注意师:同学们,谁的说法对应该见分晓了,能理解吗?生:有部分同学有兴奋的声音,能.师:还能想到什么?生:乘方运算师:对,乘方运算,这可是一个高级别的运算,谁能谈谈对它的认识?生36:乘方就是求相同因数的积的运算生37(强接):因此说,乘方就是一个特殊的乘法,它就特殊在因数是相同的,其中相同的因数称之为底数,相同因数的个数就是指数.生38:二次方也叫平方,三次方也叫立方生39:正数的任何次方是正的,负数的偶次方是正的、奇次方是负的,0的任何正整数次方为0生40:平方等于自身的数有0和1,立方等于自身的数有0和生41:相反数的平方相等、立方仍然为相反数;平方相等的两个数可能相等、也可能互为相反数生42:任何数的平方都是非负数师:同学们好厉害,一股脑地谈了这么多认识,可谓丰富.这样一来,我们这一章的基本概念就基本梳理清楚了,谁还有疑问?生43:我对数-a表示任意数不明白生44:这里的“-”表示的是一个数的相反数,并不一定是负数,当a表示正数时,-a就是一个负数,当a表示负数时,-a就是一个正数,当a表示0时,-a就是0,可见,-a和a一样可表示任意数师:这位同学通过分类表述的方式解释得非常好,我们应该表示一下掌声生45:与有什么不同?生46:读法就不同,第1个读2的平方的相反数,第2个读-2的平方生47:底数不同,第1个的底数为2,第2个的底数为-2生48:运算结果不同,第1个为-4,第2个为4生45:哦,明白了,弄清底数是关键啊!师(等待):(看学生没有提出疑问的了,进入下一环节)(教学说明:如此教学,还是第一次,效果非常好,学生的参与热情之高让人惊叹,学生感到好玩.本环节最后的疑问互答,有效调动了全体同学的参与热情,相互碰撞、相互启迪,最后达成视界的融合、观点的默契,在释疑解难中消除了遗留的盲点,在你一言我一语的完善中深化了学生的认识.)二、自主编拟,展示互答(设计说明:编题本身就是把自主权还给学生的表现,学生自然会生发自己是课堂主人的自豪感和责任意识,因此,引导学生自主编拟,提供了学生“可做事、做成事”的机会,以充分暴露学生的思维过程,展现学生生动活泼、主动求知和富有的个性,使学生真正成为学习的主体,从中体验成功的喜悦,孕育情感,发展情意,把有理数的加、减、乘、除、乘方运算推向前台,供集体研究学习,进一步熟悉各类运算法则、运算律这一核心,使得知识、技能、情感态度融汇一体,便于落实三维目标.同时有助于学生开放思维、发散思维的发展.)师:上面我们交流了一些数,请同学们至少选用其中的3个数任意使用运算符号编出一道计算题一言既出,学生们群情激昂,表现的胃口被吊了起来生46:-3+(+4)-(-5)生47:-3(+4)-(-5)生48:-3(+4)-(-5)-生49:-3(+4)-(-5)-+生50:-4+2.5104 -(-5)展示在黑板上,其它同学依次解答(过程略).师:上面我们围绕运算编拟了题目,同学们作了解答,完成的很好,下面打破限制,利用交流的数尝试编一些其他类型的题供其他同学思考、解答,可以吗?三分钟后学生就纷纷上台板书:生51:若,则=_生52:若与是同类项,则m-n=_.生53:保留2个有效数字后的近似数为2.5104的原来的数可以是( )A. 25500 B.24490 C. 24701 D.254999 生54:如图1,点A表示的数为-3,若点B在数轴上,且AB=4,则点B表示的数为_. 要求全体学生独立完成,除几个同学有阻力外,其他完成顺利,笔者特安排完成迅速的同学帮扶几个“学困”生,合作较好.师:这四道题挺有创意,都进行了知识的融合,其中第一题把一个数的绝对值、平方两个非负数及其非负性揭示出来,链接了方程、有理数的乘方运算;第二题以同类项为载体,借助方程反映了有理数的减法运算;第三题反向探测近似数与有效数字,具有一定的挑战性;第四题以数轴这条直线为介把线段的大小与数轴上点所表示的数结合,抓住了问题的交汇点,很有境界的一道好题.同学们成功的解答再一次见证了我们的优秀.(教学说明:常态的课堂是老师提供题目学生作答,也就是师问生答,以上教学环节,反其道而行之,笔者退居幕后,让学生做了一回“小先生”,大大激发了学生的参与热情,个个摩拳擦掌,跃跃欲试,学生不一会就写满了黑板,以上是选为作答的几个代表性问题,把基本运算以及与前后相关知识的联系来了一次历练,把学习引向了深入,把课堂推向了高潮.)三、练中巩固,用中体悟,(设计说明:设计这一环节的目的是让学生从单一的复习概念与计算的程式中解脱出来.从不同角度让学生继续复习本块内容,同时又能和其他章节的知识相衔接,在应用中展现、体会、感悟知识的价值,力图使本章知识的简单应用得到正强化.)1、如图21,数轴上A、B两点分别对应实数a、b,则下列结论正确的是( ) A B C D 答案:察数轴知由于a-1,1b0,则ab0,a -b0,a+b0,故选D点评:本题以数轴为载体体现了数形结合的思想,全面考查了加、减、乘等运算的符号法则. 2、现有四个有理数3,4,-6,10,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24,请你写出一个符合条件的算式 .答案:不唯一,如410(6)324;3(1046)24;(104)(6)324等.点评:以数学游戏为背景来考查基础知识与基本技能增强了题目的趣味性、灵动性,“24”点游戏实质体现了有理数混合运算的应用技能. 由于过程的开放性,思考时应注意运算的顺序与运算结果的关系.3、一个机器人从数轴的原点出发,沿数轴正方向,以每前进4步后退3步的程序运动,该机器人每秒前进或后退1步,并且每步的距离为一个单位长度,xn表示第n秒机器人在数轴上的位置所对应的数(如x4=4,x3=3,x7=1)则x2007-x2011的结果为( )A. 正数 B. 零 C. 负数 D.以上均有可能答案:B.每7秒一个循环,每个循环前进1步,由于2007被7除商286余5,2011被7除商287余2,借助图示可得x2007=289,x2011=289,故选B.点评:本题以学生感兴趣的机器人创设背景,妙趣生来,又把周期性的规律探索引入,增强了题目的戏剧性,感受到了数学的好玩.4、
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号