资源预览内容
第1页 / 共97页
第2页 / 共97页
第3页 / 共97页
第4页 / 共97页
第5页 / 共97页
第6页 / 共97页
第7页 / 共97页
第8页 / 共97页
第9页 / 共97页
第10页 / 共97页
亲,该文档总共97页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
word1绪论1.1 课题研究背景与意义我国的煤炭消耗量在世界上名列前茅,并且我们知道一次能源的主要消耗就是煤炭的消耗,而在电力行业中煤炭又作为主要的消耗品。根据统计,在2010年的时候,全国的煤炭在一次能源消费和生产的结构中,占有率达到了71.0%和75.9%,从全球X围来看,煤炭在一次能源的消费和生产结构中达到了48.5%和47.9%。根据权威机构的预测,到了2020年,我国一次能源的消费结构中,煤炭占有率约为55%,煤炭的消费量将达到38亿吨以上;到了2050年,煤炭在一次能源消费的结构中占有率仍有50%左右。由此看来,煤炭消耗量还是最主要的能源消耗 1。电力生产这块来看,在2011年,我国整体的用电量达到46819亿千瓦时,比2010年增长了11.79%.在这中间,火力发电的发电量达到了38900亿千瓦时,比2010年增长了14.10%,整个火力发电量占据全国发电量的82.45%,比照2010年增长了1.73个百分点,这说明电力行业的主要生产来自于火力发电,是电力生产的主要提供2。自改革开放以来,国家大力开展电力工业中的火力发电,每年的装机发电量以每年8各百分点飞速增长3。飞速开展的中国经济使得电力需求急剧上升,这也带来相应的高能耗,据统计,全国2002年到2009年的火力发电装机容量从,煤耗的消耗量增加了13亿吨。预计到2020年,火电装机的容量还会增长到,需要的煤耗量预计为38亿吨多,估计占有量会达到届时总煤碳量的55%4,5。随着开展的需要,大功率和高参数的机组对能耗的能量使用率会大大提升,这样对于提高火力发电燃煤机组的效率有着很重要的开展方向。2011年,全国600兆瓦级别以上的火力发电厂消耗的标准煤是329克/千瓦时,比2010年降低了约有4克/千瓦时,在2012年时,消耗的标准煤降低了3克/千瓦时达到了326克/千瓦时,但是在兴旺国家,美、日等技术成熟国家的600兆瓦级别以上的火力发电厂消耗的标准煤仅仅约为每千瓦时300克上下,可以从中看出和我国的差距还是很大的。这明确,全国600兆瓦与其以上级别的超临界火电机组在设计水平、实际运行等方面与国外成熟的火电技术是有着较大的差距。这样看来,对于600兆瓦与其以上级别的超临界火电机组的热力系统优化,探求其节能的潜力有着很重要的意义6。节能是我国很多年来一直遵循的重要方针和贯彻可持续开展的重要战略,从2016年开始,我国进入十三五规划的重要时期,在这一时期,我国全面建成小康社会的最为重要的时期。预计世界经济会进入后危机时期,全国经济建设和工业开展将进入新的平稳上升期7-9。工业开展进入更为绿色的新阶段,新能源带来的冲击会给传统工业带来更大的危机。这对于传统工业来是机遇和挑战,对于火力发电来说,能耗的高消耗是绿色开展的重要方向1011。因此可以看出其节能影响之大,将热力系统作为对象定量计算和分析,对机组内部参数进展剖析。定量计算方法对考核火力发电机组的热经济性有着非常实际的指导意义和现实价值,作为火电厂系统的初始设计方法和技术改造根底在热力系统分析方法中有着重要的地位12。本文将采用定流量计算分析火电厂热力系统的热力单元之间存在的能量关系,探讨可优化的点,为节能寻找优化信息。我们可以依靠系统增加的有序性和减少的不确定性用以将能源的利用率进展提高。1.2 国内外开展现状热力系统的分析方法是为了更加准确的和真实的展示热力系统内部的真实情况和反映出热力单元之间存在的关系。经过诸多的科研工作者和前人科学家的努力研究和实际应用尝试,现今,针对各个热力参数的研究出现了多种研究方法,这些研究方法根据其根底原理,有基于热力学第一定律的,其中有代数运算方法、矩阵法和偏微分理论方法;基于热力学第二定律并结合第一热力学定律的主要是分析方法。1.2.1 代数运算法的研究进展代数运算法本质上是根据实际运行情况联立每个热力单元,热力子系统的质量与能量的平衡方程,计算准确度比拟高的分析方法。主要是基于热力学第一定律的大框架下,对抽汽回热系统的各级抽汽之间的关系量化,数据化计算分析13,14。代数运算法在热力分析中存在多种方式,都是基于热力学第一定律的大框架下。主要是对抽汽回热系统的平衡方程组进展量化并完善求解,也会根据实际情况改变方程组达到更加真实表现出实际的效果,这里有串联解法以与循环函数法和等效热降法。热力系统串联解法是在最早的电力行业建设时发电工程的早期运算方法,根据回热加热器的能量平衡原如此来计算抽汽回热中各级的抽汽数值,作为根本的热力分析方法,因为其经典的计算方式在现今仍有很强的使用性。串联解法的使用需从高压力的一级加热器也就是通常为高加一级一级开始计算分析,固定高加的给水流量进展运算15“加热单元这一概念,我国的马芳礼在这根底上提出了循环函数法,这是一个简化分析方法16。这个方法需要先计算出热力系统的抽汽量等参数,然后将热力系统各个系统分开拆解为多个子系统再重合计算。热力系统有时需要改变一些情况再剖析内部实质,有些运算的受限是因为热力系统的热效益的影响,因此对一些损失的影响计算结果并不是很完善和灵活。等效焓降法是前苏联的专家Kuznetsov最早提出的方法,经过十年的严谨完善,然后我国研究工作者将其引入并研究应用实际中17,1819,我国有研究者解读了这一方法20。这个方法是把Z级回热抽汽假象为一股抽象的抽汽,抽汽量为所有各级抽汽量之和,假想地这个抽汽的焓值是各级抽汽对应抽汽焓经过加权平均算得的值。等效抽汽法是的原如此是,将单位质量的凝汽以根底进展分析运算,它的焓值越小,抽汽量越大,热耗率就会越来越低。1.2.2 矩阵法的研究进展矩阵法最早是在20世纪90年代由郭丙然和其他学者最早提出的热力系统分析方法21,22。将热力系统的抽汽回热系统中的热力单元,依据能量守恒列出线性方程组进展联立起来求解就是该方法的分析过程。这样可以一次计算出很多个未知参数,并可以解出抽汽量的数值,这种对应于串联解法的分析方法可以称之为并联解法。在之后的很多学者还是对矩阵法进展了完善和研究,可以让他会有更好的灵活性和通用性23,24。现今,应用矩阵方法对热力系统其经济性研究更加完善和方便。1.2.3 偏微分法的研究进展偏微分法是最早由X春发显示提出的,最早主要是为了定义和推到等效焓降值和相对应的抽汽效率的。刚开始称之为“小扰动理论,并有学者验证了其一致性25,26。之后结合矩阵法的根底上,有学者提出了新的方法热汽耗变换系数法27,是利用推导的热耗变换系数和汽耗变换系数作为评定标准,对热力系统进展计算分析的。1.2.4 分析法的研究进展最早的Gouy等一些人提出了能的质量概念,后来由Rant在1956年总结出了“的概念并提出,这使得能量被分成了可以转换和不可装换两个新的局部。名称是“Exergy,中文命名为“。 效率反映出了一个设备能量转换为有用功的程度。人们注意到了表现的是能量转换的程度,这对节能具有重要研究意义,外国研究者作了很多将实际生产运用到了分析中28-33。越来越多的研究人员将分析法结合实例进展计算,通过评定参数损失量、效率、损系数以与损率对实际生产提供越来越有意义的指导方向。1.3 本文研究内容本文将在秦岭发电厂实习期间学习的660MW超临界发电机组作为研究对象,通过运用等效焓降法、固定新汽流量建立平衡矩阵方程式方法、分析法将系统的汽轮机抽汽回热系统作为主要研究对象,通过计算各级抽汽的各个参数数值关系和相互影响,得到分析结果。将实际运行过程中的因素考虑进去,得算出抽汽分配和给水焓升分配结果,分析其中数值关系。从中探究出计算参数的数值同实际情况的异同,寻求可优化节能局部,试提出意见和建议。本文主要的研究内容有:1利用各级抽气参数结合等效焓降的方法导算出各级抽汽的等效焓降算式以与对应的抽汽效率的算式,计算出各级相对于新汽的抽汽率和抽汽做功不足系数,相关抽汽级的真实等效焓降和对应的抽汽效率,新汽的等效焓降和抽汽效率,从计算结果中做出分析,解剖其中大小异同原因,做出科学的解释。2利用矩阵法热力分析方法结合物料平衡和能量平衡守如此,基于固定新汽流量的原如此构建出矩阵平衡方程式并标明各热力点参数的填入规定,构建方程做出循环计算框图,运算出相对应的抽汽分配量和一些重要参数,做出针对汽轮机效率的目标函数来运用数学方法得到给水焓升分配,并分析其分配结果和改良的方法,针对实际中超临界机组的运行数据和参数,比照出异同,分析其原因。3运用分析方法计算出热力系统各热力单元的评定参数,输出的值,损失掉的损失量以与效率、损系数和损率。探讨分析结果中锅炉系统、汽轮机系统和抽汽回热系统损失、效率的数值大小,根据实际状况解读各评定参数结果的原因,逐个分析其可优化空间和优化方法,为整个热力系统的节能提出合理化意见和建议和改良措施并探讨其可行性和困难点。 / 2 660MW超临界机组热力系统本文所研究的对象是华能秦岭公司660MW超临界发电机组,该汽轮机是东方汽轮机厂制造的一个超临界压力汽轮机,型号为NJK622-24.2/566/566,可以根据这个型号看出来该机组是一个超临界的并且是一次再热的,再热温度是5666型,该锅炉同样是依次再热,并且全露天布置、有固态排渣系统,是一个全钢机构、全悬吊结构锅34。图2-1为热力系统流程,图2-2显示了机组锅炉内过热器和再热器的布置。图2-1 660MW机组原如此性系统图Fig.2-1 Principle system diagram of 660MW unit本文研究主要对象是660MW机组汽轮机抽汽回热系统,根据了解该电厂汽轮机抽气回热系统共有七段非调整抽汽,第一段抽汽引向高压缸,全机第6级后,供1号高压加热器;第二段抽气引自高压缸排汽,在全机第8级后,供2号高压加热器、给水泵汽轮机与辅汽系统的备用汽源;第三段抽汽引自中压缸,在全机第11级后,供3号高压加热器;第四段抽气引自中压缸排汽,在全机第14级后,供应除氧器、给水泵汽轮机、辅汽系统;第五至第七段抽汽均引由低压缸A和低压缸B第16,17,18级抽出。抽汽在外表式加热器中放热后的疏水,高压加热器和低压加热器每级的凝结疏水来加热下级进入工质的温度,3号高加的疏水流向除氧器,而7号低加的疏水流向凝汽器。由于各级加热器均设有疏水冷却段,可将抽汽的凝结水在疏水冷却段内进一步冷却,使疏水的温度低于其饱和温度,故可以防止疏水的汽化对下级加热器抽汽的排挤。图2-3为汽轮机抽汽回热系统图,表2-1到表2-4是系统主要技术参数与抽汽回热系统各级抽汽技术参数。表中根据超临界机组系统中抽汽回热的七段抽汽温度和压力数据,查得热力学饱和水和水蒸汽热力性质表以与未饱和水与过热蒸汽热力性质表,运用线性差值法查表并计算得出各段抽汽的饱和水温度、焓值。在抽汽回热的给水数据中,由前一段抽汽直至排汽减去后一段给水出口焓值得到每一段抽汽的给水焓升值。在抽汽图2-2 过、再热器流程图Fig.2-2 Flow chart of superheater and reheater表2-1 热力系统技术参数VWO工况回热的疏水数据中,由前一段抽汽直至第七段减去后一段疏水焓值得到每段抽汽的疏水放热量,因为1号高压缸没有再上一级的疏水,故没有疏水放热量。每一段抽汽的抽汽放热量为每一段抽的焓值减去该段抽汽的疏水焓值。Table 2-1 Thermodynamic system technical parameters (VWO condition)名称数值名称数值机组出力中压缸排汽压力主蒸汽流量2141t/h低压缸进汽温度主蒸汽
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号