资源预览内容
第1页 / 共16页
第2页 / 共16页
第3页 / 共16页
第4页 / 共16页
第5页 / 共16页
第6页 / 共16页
第7页 / 共16页
第8页 / 共16页
第9页 / 共16页
第10页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
福建师范大学21春复变函数离线作业2参考答案1. 设数列un为等差数列,un0(n=1,2,.),证明:级数是发散的设数列un为等差数列,un0(n=1,2,.),证明:级数是发散的设u1=a,un=u1+nd=a+nd,其中d为公差,则当un0时,有 不妨设公差d0,可知必定存在N,使a+Nd0,因而当nN时,(如果d0,必定存在N,使a+Nd0,因而当nN时,) 由于,且当d0时有 由正项级数极限形式的比较判别法可知: 当nN时,a+nd0时,发散,若当nN时,a+nd0,发散,因此不论a+nd0还是a+nd0,可知发散只需写出un的一般表达式可解 2. 某物体的运动轨迹可以用其位移和时间关系式s=s(t): s=t3-6t2+7t,0t4 来刻画,其中s以米计,f以秒计,以起某物体的运动轨迹可以用其位移和时间关系式s=s(t):s=t3-6t2+7t,0t4来刻画,其中s以米计,f以秒计,以起始方向为位移的正方向试回答以下关于物体的运动性态的问题:(1)物体何时处于静止状态?(2)何时运动方向为正或为负,何时改变运动方向?(3)何时运动加快、变慢?(4)何时运动最快、最慢?(5)何时离起始位置最远?位移:s=t3-6t2+7t,速度: 加速度: (1)我们知道当v变为零,即 v=3t2-12t+7=0, 也即秒或秒时,物体瞬间处于静止状态 (2)由于起始速度v(0)=7米/秒,且v=v(t)为t的二次函数,故可知t内,物体运动方向为正;在内,运动方向为负,于是可知秒或秒时运动方向改变 (3)当a0,即t2,4时,运动速度加快; 当a0,即t0,2时j运动速度变慢 (4)由(2)的分析知,当秒时,速度v值最小;又根据二次函数的性质,可知当t=0秒或4秒时,速度v值最大 (5)我们可以根据s(t)的导数 s(t)=v(t)=3t2-12t+7 的取值来判断s的单调性,且易知s(t)即v(t)的零点 和 即为s(t)单调性发生改变的点,且知秒时取得最大位移,t=2+秒时取得最小位移 3. 试证明: 设,m*(E)0,0cm*(E),则存在E的子集A,使得m*(A)=c试证明:设,m*(E)0,0cm*(E),则存在E的子集A,使得m*(A)=c证明 记f(x)=m*(a,x)E),axb,则f(a)=0,f(b)=m*(E).考察x与x+x,不妨设axx+xb,则由 a,x+x)E=(a,x)E)(x,x+x)E) 可知,f(x+x)f(x)+x,即 f(x+x)-f(x)x 对x0也可证得类似不等式,总之,我们有 |f(x+x)-f(x)|x|,axb 这说明fC(a,b),根据连续函数中值定理,对于f(a)cf(b),必存在(a,b),使得f()=c.从而取A=a,)E,即得所证 4. 设yf(x2b)其中b为常数,f存在二阶导数,求y设yf(x2b)其中b为常数,f存在二阶导数,求y正确答案:yf(x2b)2xyf(x。b)2x2xf(x2b)24x2f(x2b)2f(x2b)5. 1验证下列各给定函数是其对应微分方程的解:1验证下列各给定函数是其对应微分方程的解:y=c1+2c2x,y=2c2,代入方程后得 $y=3c1e3x+4c2e4x,y=9c1e3x+16c2x4x,于是 左边=9c1e3x+16c2e4x-7(3c1e3x+4c2e4x)+12(c1e3x+c2e4x) =e3x(9c1-21c1+12c1)+e4x(16c2-28c2+12c2) =0=右边$于所给函数关系xy=c1ex+c2e-x两边对x求导两次,得 xy+y=c1ex-c2e-x xy+2y=c1ex+c2e-x 注意到c1ex+c2e-x=xy,上面的第二个关系式便说明 xy+2y=xy 成立,即所给函数满足微分方程. 注意,此题亦可单独计算y,y,再代入微分方程中验证,但计算量较大$,y=4c1e2x+25c2e-5x,于是 =c1e2x(4+6-10)+c2e-5x(25-15-10)+2x =右边$于所给函数关系两边求导二次,有 解得,代入微分方程中: 6. 初等函数是否必定存在原函数?初等函数是否必定存在原函数?7. 求解线性规划问题 min f=3x12x2x3, stx12x2x3=15, 2x15x3=18, 2x14x2x3x4=10, xj0(j=1,2,3求解线性规划问题minf=3x1+2x2+x3,stx1+2x2+x3=15,2x1+5x3=18,2x1+4x2+x3+x4=10,xj0(j=1,2,3,4)注意到,系数矩阵中含有一个单位向量p4,这时可以省去一个人工变量,即只引进两个人工变量x5,x6于是,第一阶段问题为 min z=x5+x6, s.t.x1+2x2+x3+x5=15, 2x1+5x3+x6=18, 2x1+4x2+x3+x4=10, xj0(j=1,2,6).列出初始单纯形表(简化的),如表2-33. 表2-33 x1 x2 x3f0-3-2-1z333 2 6x5 x6x41518101 2 12 0 5*2 4 1 注意表2-33中z行的元素只等于人工变量x5,x6所在行的对应元素之和,而不是同列其余各元素之和相继迭代两次,得表2-34和表2-35. 表2-34 x1 x2 x6ffrac185-frac135-2 frac15zfrac575frac35 2-frac65x5 x3x4frac575frac185frac325frac35 2-frac15frac25 0 frac15frac85 4*-frac15 表2-35 x1 x4 x6ffrac345-frac95 frac12 frac110zfrac415-frac15-frac12-frac1110x5 x3x2frac415frac185frac85-frac15-frac12-frac110frac25 0 frac15frac25 frac14-frac120 表2-35是第一阶段问题的最优解表,但最优值由此判定原问题无可行解 8. 袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是_2/5由抽签原理,每个人取得黄球的概率相等,均为2/5,或由全概率公式,也可算得所求概率为2/5(略)9. 设一次试验成功的概率为P,进行100次独立重复试验,当P=( )时,成功次数的标准差的值最大,其最大值max=( )设一次试验成功的概率为P,进行100次独立重复试验,当P=()时,成功次数的标准差的值最大,其最大值max=()10. 设f(x)在a,b上连续,在(a,b)内可导,且f(a)=f(b)=0,试证在(a,b)内,一定存在f&39;(x)+kf(x)的零点设f(x)在a,b上连续,在(a,b)内可导,且f(a)=f(b)=0,试证在(a,b)内,一定存在f(x)+kf(x)的零点设F(x)=ekxf(x)在a,b上利用罗尔定理可证在(a,b)内,一定存在f(x)+kf(x)的零点11. 求(U,V)的相关系数求(U,V)的相关系数正确答案:12. 设有指标集I,f(x):I是Rn上可测函数族,试问函数S(x)=supf(x):I在Rn上是可测的吗?设有指标集I,f(x):I是Rn上可测函数族,试问函数S(x)=supf(x):I在Rn上是可测的吗?13. 设随机变量X的分布律为 X 0 p 0.4 r 0.1设随机变量X的分布律为X0p0.4r0.1且E(X)=0,D(X)=2,试求待定系数,r,其中由离散型随机变量分布律的性质得1=0.4+r+0.1r=0.5 又由数学期望与方差的定义得 E(X)=0=0.4+00.5+0.10.4+0.1=0=-4, D(X)=2=0.4(-0)2+0.5(0-0)2+0.1(-0)20.42+0.12=2,解得=1,=4 又,故=-1,=4,r=0.5小结随机变量的分布律(或概率密度)的性质、数学期望和方差的定义在确定待定系数的题目中经常用到,要灵活掌握三者之间的相互转化关系 14. 一个概率为0或概率为1的事件是一个几乎确定的事件,因而与任一随机事件独立,这种说法是否成立?一个概率为0或概率为1的事件是一个几乎确定的事件,因而与任一随机事件独立,这种说法是否成立?成立我们可严格地表述为:设P(A)=0或1,则A与任一事件B独立不妨设P(A)=0(P(A)=1同样可证),P(A)且P(AB)=0,导致P(AB)P(A)=0,于是P(AB)=0,所以 P(AB)=0=P(A)P(B),此即A,B独立 15. 两个本原多项式g(x)和h(x)若在Qx中相伴,那么g(x)h(x)等于多少?A、1B、任意常数cC、任意有理数两个本原多项式g(x)和h(x)若在Qx中相伴,那么g(x)/h(x)等于多少?A、1B、任意常数cC、任意有理数D、任意实数正确答案: A16. 证明:若函数f(x)在点x0处有f+(x0)0(0),f-(x0)0(0),则x0为f(x)的极大(小)值点。证明:若函数f(x)在点x0处有f+(x0)0(0),f-(x0)0(0),则x0为f(x
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号