资源预览内容
第1页 / 共20页
第2页 / 共20页
第3页 / 共20页
第4页 / 共20页
第5页 / 共20页
第6页 / 共20页
第7页 / 共20页
第8页 / 共20页
第9页 / 共20页
第10页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
数学精品复习资料圆的有关性质一、选择题1. (2014山东潍坊,第6题3分)如图,平行四边形ABCD的顶点A、B、D在0上,顶点C在O直径BE上,连接AE,E=36,则ADC的度数是( ) A,44 B54 C72 D53考点:圆周角定理;平行四边形的性质分析:根据平行四边形的性质得到ABC=ADC,再根据圆周角定理的推论由BE为O的直径得到BAE=90,然后根据三角形内角和定理可计算出ABE的度数解答:BE为O的直径,BAE=90,ABC =90AEB=54四边形ABCD为平行四边形,ADC=ABC=54,故选B点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径也考查了平行四边形的性质2.(2014年贵州黔东南6(4分))如图,已知O的直径CD垂直于弦AB,ACD=22.5,若CD=6cm,则AB的长为()A4cmB3cmC2cmD2cm考点:圆周角定理;等腰直角三角形;垂径定理12999数学网专题:计算题分析:连结OA,根据圆周角定理得AOD=2ACD=45,由于3O的直径CD垂直于弦AB,根据垂径定理得AE=BE,且可判断OAE为等腰直角三角形,所以AE=OA=,然后利用AB=2AE进行计算解答:解:连结OA,如图,ACD=22.5,AOD=2ACD=45,O的直径CD垂直于弦AB,AE=BE,OAE为等腰直角三角形,AE=OA,CD=6,OA=3,AE=,AB=2AE=3(cm)故选B点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半也考查了等腰直角三角形的性质和垂径定理3. (2014山东临沂,第9题3分)如图,在O中,ACOB,BAO=25,则BOC的度数为()A25B50C60D80考点:圆周角定理;平行线的性质分析:由ACOB,BAO=25,可求得BAC=B=BAO=25,又由圆周角定理,即可求得答案解答:解:OA=OB,B=BAO=25,ACOB,BAC=B=25,BOC=2BAC=50故选B点评:此题考查了圆周角定理以及平行线的性质此题难度不大,注意掌握数形结合思想的应用4(2014四川凉山州,第12题,4分)已知O的直径CD=10cm,AB是O的弦,ABCD,垂足为M,且AB=8cm,则AC的长为( )AcmBcmCcm或cmDcm或cm 考点:垂径定理;勾股定理专题:分类讨论分析:先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论解答:解:连接AC,AO,O的直径CD=10cm,ABCD,AB=8cm,AM=AB=8=4cm,OD=OC=5cm,当C点位置如图1所示时,OA=5cm,AM=4cm,CDAB,OM=3cm,CM=OC+OM=5+3=8cm,AC=4cm;当C点位置如图2所示时,同理可得OM=3cm,OC=5cm,MC=53=2cm,在RtAMC中,AC=2cm故选C点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键5(2014四川泸州,第12题,3分)如图,在平面直角坐标系中,P的圆心坐标是(3,a)(a3),半径为3,函数y=x的图象被P截得的弦AB的长为,则a的值是()A4BCD解答:解:作PCx轴于C,交AB于D,作PEAB于E,连结PB,如图,P的圆心坐标是(3,a),OC=3,PC=a,把x=3代入y=x得y=3,D点坐标为(3,3),CD=3,OCD为等腰直角三角形,PED也为等腰直角三角形,PEAB,AE=BE=AB=4=2,在RtPBE中,PB=3,PE=,PD=PE=,a=3+故选B点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧也考查了勾股定理和等腰直角三角形的性质6(2014四川内江,第7题,3分)如图,O是ABC的外接圆,AOB=60,AB=AC=2,则弦BC的长为()AB3C2D4考点:垂径定理;圆周角定理;解直角三角形分析:如图,首先证得OABC;然后由圆周角定理推知C=30,通过解直角ACD可以求得CD的长度则BC=2CD解答:解:如图,设AO与BC交于点DAOB=60,OB=OA,OAB是等边三角形,BAO=60,即BAD=60又AB=AC,=ADBC,BD=CD,在直角ABD中,BD=ABsin60=2=,BC=2CD=2故选:C点评:本题考查了解直角三角形,圆周角定理等知识点推知OAB是等边三角形是解题的难点,证得ADBC是解题的关键7(2014甘肃兰州,第13题4分)如图,CD是O的直径,弦ABCD于E,连接BC、BD,下列结论中不一定正确的是()AAE=BEB=COE=DEDDBC=90考点:垂径定理;圆周角定理分析:由于CDAB,根据垂径定理有AE=BE,弧AD=弧BD,不能得出OE=DE,直径所对的圆周角等于90解答:解:CDAB,AE=BE,=,CD是O的直径,DBC=90,不能得出OE=DE故选C点评:本题考查了垂径定理解题的关键是熟练掌握垂径定理的内容二、填空题1. (2014四川巴中,第17题3分)如图,已知A、B、C三点在O上,ACBO于D,B=55,则BOC的度数是考点:圆周角定理分析:根据垂直的定义得到ADB=90,再利用互余的定义计算出A=90B=35,然后根据圆周角定理求解解答:ACBO,ADB=90,A=90B=9055=35,BOC=2A=70故答案为70点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半2(2014湖南张家界,第16题,3分)如图,AB、CD是半径为5的O的两条弦,AB=8,CD=6,MN是直径,ABMN于点E,CDMN于点F,P为EF上的任意一点,则PA+PC的最小值为考点:垂径定理;等腰梯形的性质专题:压轴题分析:A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值解答:解:连接OA,OB,OC,作CH垂直于AB于H根据垂径定理,得到BE=AB=4,CF=CD=3,OE=3,OF=4,CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角BCH中根据勾股定理得到BC=7,则PA+PC的最小值为点评:正确理解BC的长是PA+PC的最小值,是解决本题的关键3. (2014江西抚州,第13题,3分) 如图,ABC内接于O ,OAB=20,则C的度数为.解析:OA=OB,OBA=OAB=20,AOB=140,C=AOB=70 4. (2014年山东东营,第16题4分)在O中,AB是O的直径,AB=8cm,=,M是AB上一动点,CM+DM的最小值是8cm考点:轴对称-最短路线问题;勾股定理;垂径定理12999数学网分析:作点C关于AB的对称点C,连接CD与AB相交于点M,根据轴对称确定最短路线问题,点M为CM+DM的最小值时的位置,根据垂径定理可得=,然后求出CD为直径,从而得解解答:解:如图,作点C关于AB的对称点C,连接CD与AB相交于点M,此时,点M为CM+DM的最小值时的位置,由垂径定理,=,=,=,AB为直径,CD为直径,CM+DM的最小值是8cm故答案为:8点评:本题考查了轴对称确定最短路线问题,垂径定理,熟记定理并作出图形,判断出CM+DM的最小值等于圆的直径的长度是解题的关键5(2014四川南充,第14题,3分)如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是(结果保留)分析:设AB于小圆切于点C,连接OC,OB,利用垂径定理即可求得BC的长,根据圆环(阴影)的面积=OB2OC2=(OB2OC2),以及勾股定理即可求解解:设AB于小圆切于点C,连接OC,OBAB于小圆切于点C,OCAB,BC=AC=AB=8=4cm圆环(阴影)的面积=OB2OC2=(OB2OC2)又直角OBC中,OB2=OC2+BC2圆环(阴影)的面积=OB2OC2=(OB2OC2)=BC2=16cm2故答案是:16点评:此题考查了垂径定理,切线的性质,以及勾股定理,解题的关键是正确作出辅助线,注意到圆环(阴影)的面积=OB2OC2=(OB2OC2),利用勾股定理把圆的半径之间的关系转化为直角三角形的边的关系6(2014甘肃兰州,第18题4分)如图,ABC为O的内接三角形,AB为O的直径,点D在O上,ADC=54,则BAC的度数等于 考点:圆周角定理分析:由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得B的度数,又由直径所对的圆周角是直角,即可求得ACB=90,继而求得答案解答:解:ABC与ADC是所对的圆周角,ABC=ADC=54,AB为O的直径,ACB=90,BAC=90ABC=9054=36故答案为:36点评:此题考查了圆周角定理与直角三角形的性质此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等与直径所对的圆周角是直角定理的应用三、解答题1. (2014上海,第25题14分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G(1)当圆C经过点A时,求CP的长;(2)联结AP,当APCG时,求弦EF的长;(3)当AGE是等腰三角形时,求圆C的半径长考点:圆的综合题
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号