资源预览内容
第1页 / 共114页
第2页 / 共114页
第3页 / 共114页
第4页 / 共114页
第5页 / 共114页
第6页 / 共114页
第7页 / 共114页
第8页 / 共114页
第9页 / 共114页
第10页 / 共114页
亲,该文档总共114页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
精选优质文档-倾情为你奉上目 录第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2013年上海市中考第24题例2 2012年苏州市中考第29题例3 2012年黄冈市中考第25题例4 2010年义乌市中考第24题例5 2009年临沂市中考第26题例6 2008年苏州市中考第29题1.2 因动点产生的等腰三角形问题例1 2013年上海市虹口区中考模拟第25题例2 2012年扬州市中考第27题例3 2012年临沂市中考第26题例4 2011年湖州市中考第24题例5 2011年盐城市中考第28题例6 2010年南通市中考第27题例7 2009年江西省中考第25题1.3 因动点产生的直角三角形问题例1 2013年山西省中考第26题例2 2012年广州市中考第24题例3 2012年杭州市中考第22题例4 2011年浙江省中考第23题例5 2010年北京市中考第24题例6 2009年嘉兴市中考第24题例7 2008年河南省中考第23题1.4 因动点产生的平行四边形问题例1 2013年上海市松江区中考模拟第24题例2 2012年福州市中考第21题例3 2012年烟台市中考第26题例4 2011年上海市中考第24题例5 2011年江西省中考第24题例6 2010年山西省中考第26题例7 2009年江西省中考第24题1.5 因动点产生的梯形问题例1 2012年上海市松江中考模拟第24题例2 2012年衢州市中考第24题例4 2011年义乌市中考第24题例5 2010年杭州市中考第24题例7 2009年广州市中考第25题1.6 因动点产生的面积问题例1 2013年苏州市中考第29题例2 2012年菏泽市中考第21题例3 2012年河南省中考第23题例4 2011年南通市中考第28题例5 2010年广州市中考第25题例6 2010年扬州市中考第28题例7 2009年兰州市中考第29题1.7 因动点产生的相切问题例1 2013年上海市杨浦区中考模拟第25题例2 2012年河北省中考第25题例3 2012年无锡市中考第28题1.8 因动点产生的线段和差问题例1 2013年天津市中考第25题例2 2012年滨州市中考第24题例3 2012年山西省中考第26题第二部分 图形运动中的函数关系问题2.1 由比例线段产生的函数关系问题例1 2013年宁波市中考第26题例2 2012年上海市徐汇区中考模拟第25题例3 2012年连云港市中考第26题例4 2010年上海市中考第25题2.2 由面积公式产生的函数关系问题例1 2013年菏泽市中考第21题例2 2012年广东省中考第22题例3 2012年河北省中考第26题例4 2011年淮安市中考第28题例5 2011年山西省中考第26题例6 2011年重庆市中考第26题第三部分图形运动中的计算说理问题3.1 代数计算及通过代数计算进行说理问题例1 2013年南京市中考第26题例2 2013年南昌市中考第25题3.2几何证明及通过几何计算进行说理问题例1 2013年上海市黄浦区中考模拟第24题例2 2013年江西省中考第24题第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形问题 例1 2013年上海市中考第24题如图1,在平面直角坐标系xOy中,顶点为M的抛物线yax2bx(a0)经过点A和x轴正半轴上的点B,AOBO2,AOB120(1)求这条抛物线的表达式;(2)连结OM,求AOM的大小;(3)如果点C在x轴上,且ABC与AOM相似,求点C的坐标图1 动感体验请打开几何画板文件名“13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,ABC与AOM相似请打开超级画板文件名“13上海24”,拖动点C在x轴上运动,可以体验到,点C在点B的右侧,有两种情况,ABC与AOM相似点击按钮的左部和中部,可到达相似的准确位置。思路点拨1第(2)题把求AOM的大小,转化为求BOM的大小2因为BOMABO30,因此点C在点B的右侧时,恰好有ABCAOM3根据夹角相等对应边成比例,分两种情况讨论ABC与AOM相似满分解答(1)如图2,过点A作AHy轴,垂足为H在RtAOH中,AO2,AOH30,所以AH1,OH所以A因为抛物线与x轴交于O、B(2,0)两点,设yax(x2),代入点A,可得 图2所以抛物线的表达式为(2)由,得抛物线的顶点M的坐标为所以所以BOM30所以AOM150(3)由A、B(2,0)、M,得,所以ABO30,因此当点C在点B右侧时,ABCAOM150ABC与AOM相似,存在两种情况:如图3,当时,此时C(4,0)如图4,当时,此时C(8,0) 图3 图4考点伸展在本题情境下,如果ABC与BOM相似,求点C的坐标如图5,因为BOM是30底角的等腰三角形,ABO30,因此ABC也是底角为30的等腰三角形,ABAC,根据对称性,点C的坐标为(4,0)图5例2 2012年苏州市中考第29题如图1,已知抛物线(b是实数且b2)与x轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C(1)点B的坐标为_,点C的坐标为_(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得QCO、QOA和QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由图1动感体验请打开几何画板文件名“12苏州29”,拖动点B在x轴的正半轴上运动,可以体验到,点P到两坐标轴的距离相等,存在四边形PCOB的面积等于2b的时刻双击按钮“第(3)题”,拖动点B,可以体验到,存在OQAB的时刻,也存在OQAB的时刻思路点拨1第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴的距离相等2联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示3第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q最大的可能在经过点A与x轴垂直的直线上满分解答(1)B的坐标为(b, 0),点C的坐标为(0, )(2)如图2,过点P作PDx轴,PEy轴,垂足分别为D、E,那么PDBPEC因此PDPE设点P的坐标为(x, x)如图3,联结OP所以S四边形PCOBSPCOSPBO2b解得所以点P的坐标为()图2 图3(3)由,得A(1, 0),OA1如图4,以OA、OC为邻边构造矩形OAQC,那么OQCQOA当,即时,BQAQOA所以解得所以符合题意的点Q为()如图5,以OC为直径的圆与直线x1交于点Q,那么OQC90。因此OCQQOA当时,BQAQOA此时OQB90所以C、Q、B三点共线因此,即解得此时Q(1,4)图4 图5考点伸展第(3)题的思路是,A、C、O三点是确定的,B是x轴正半轴上待定的点,而QOA与QOC是互余的,那么我们自然想到三个三角形都是直角三角形的情况这样,先根据QOA与QOC相似把点Q的位置确定下来,再根据两直角边对应成比例确定点B的位置如图中,圆与直线x1的另一个交点会不会是符合题意的点Q呢?如果符合题意的话,那么点B的位置距离点A很近,这与OB4OC矛盾例3 2012年黄冈市中考模拟第25题如图1,已知抛物线的方程C1: (m0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧(1)若抛物线C1过点M(2, 2),求实数m的值;(2)在(1)的条件下,求BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BHEH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与BCE相似?若存在,求m的值;若不存在,请说明理由图1动感体验请打开几何画板文件名“12黄冈25”,拖动点C在x轴正半轴上运动,观察左图,可以体验到,EC与BF保持平行,但是BFC在无限远处也不等于45观察右图,可以体验到,CBF保持45,存在BFCBCE的时刻思路点拨1第(3)题是典型的“牛喝水”问题,当H落在线段EC上时,BHEH最小2第(4)题的解题策略是:先分两种情况画直线BF,作CBFEBC45,或者作BF/EC再用含m的式子表示点F的坐标然后根据夹角相等,两边对应成比例列关于m的方程满分解答(1)将M(2, 2)代入,得解得m4(2)当m4时,所以C(4, 0),E(0, 2)所以SBCE(3)如图2,抛物线的对称轴是直线x1,当H落在线段EC上时,BHEH最小设对称轴与x轴的交点为P,那么因此解得所以点H的坐标为(4)如图3,过点B作EC的平行线交抛物线于F,过点F作FFx轴于F由于BCEFBC,所以当,即时,BCEFBC设点F的坐标为,由,得解得xm2所以F(m2, 0)由,得所以由,得整理,得016此方程无解图2 图3 图4如图4,作CBF45交抛物线于F,过点F作FFx轴于F,由于EBCCBF,所以,即时,BCEBFC在RtBFF中,由FFBF,得解得x2m所以F所以BF2m2,由,得解得综合、,符合题意的m为考点伸展第(4)题也可以这样求BF的长:在求得点F、F的坐标后,根据两点间的距离公式求BF的长例4 2010年义乌市中考第24题如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3)(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号