资源预览内容
亲,该文档总共2页全部预览完了,如果喜欢就下载吧!
资源描述
27.2.1 相似三角形的判定第1课时 平行线分线段成比例学习目标:会用符号“”表示相似三角形如 ;知道当与的相似比为时,与的相似比为理解掌握平行线分线段成比例定理.学习过程:一.自主学习1.相似多边形的主要特征是什么?相似三角形有什么性质?2.在相似多边形中,最简单的就是相似三角形在与中,如果A=A, B=B, C=C, 且 我们就说与相似,记作,就是它们的相似比反之如果,则有A=_, B=_, C=_, 且 问题:如果,这两个三角形有怎样的关系?明确 (1)在相似多边形中,最简单的就是相似三角形。(2) 用符号“”表示相似三角形如;(3)相似比是带有顺序性和对应性的: 当与的相似比为时,与的相似比为二、合作学习探究:(1) 如图,任意画两条直线 , ,再画三条与 , 相交的平行线 , ,分别量度 , ,在 上截得的两条线段AB, BC和在, 上截得的两条线段DE, EF的长度, 与相等吗?任意平移, 再量度AB, BC, DE, EF的长度, 与相等吗?(2) 问题,强调“对应线段的比是否相等”(3) 归纳总结:平行线分线段成比例定理 三条_截两条直线,所得的_线段的比_。应重点关注:平行线分线段成比例定理中相比线段同线; 探究:(2) 平行线分线段成比例定理推论思考:1、如果把图中l1 , l2两条直线相交,交点A刚落到l3上,如下左图,所得的对应线段的比会相等吗?依据是什么?思考、如果把图中l1 , l2两条直线相交,交点A刚落到l4上,如图上右图,所得的对应线段的比会相等吗?依据是什么?归纳总结:平行线分线段成比例定理推论 平行于三角形一边的直线截其他两边(或两边延长线),所得的_线段的比_.三、扣标展示(展示点评)四、达标测评(当堂训练)如图,在ABC中,DEBC,AC=4 ,AB=3,EC=1.求AD和BD.反思:1
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号