资源预览内容
第1页 / 共36页
第2页 / 共36页
第3页 / 共36页
第4页 / 共36页
第5页 / 共36页
第6页 / 共36页
第7页 / 共36页
第8页 / 共36页
第9页 / 共36页
第10页 / 共36页
亲,该文档总共36页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
fa钢丝网架焊接机械手的结构设计绪 论根据建材市场的需求和国家关于创新发展新型墙体材料政策的实施,国家对建筑用材有了更加严格的要求,建筑节能越来越得到人们的高度重视。我国全面展开了建筑节能工作,迄今为止国家已对全国50%以上的地区下达节能强制性标准和要求的文件。传统的通过高温烧结黏土形成的红砖作为墙体材料的生产过程严重破坏生态环境,并极度浪费资源与能源,成为经济社会可持续发展的最大障碍之一。钢丝网架珍珠岩夹芯板是一种新型墙体材料,它以其自重轻、保温、隔热、隔音、抗震能力高、施工方便、价格低廉等优点,广泛应用于工业建筑与民用建筑框架结构中的非承重墙体和防火要求高的防火通道、防火墙等部位。工业机器人技术的研究、发展与应用,使得在生产生活中很多人力难以实现任务通过机器人得以完成,同时也提高了生产效率,有力地推动了世界工业技术的发展。特别是焊接机器人在高质、高效的焊接生产中,发挥了极其重要的作用。在当前服役的各类工业机器人中,焊接机器人占了很大比例,其中日本是世界上拥有机器人最多的国家,焊接机器人占到日本机器人总量的35%2。 工业机器人又称机械手,由机械本体、控制器、伺服驱动系统和检测传感装置组成,是一种仿人操作、自动控制、能在三维空间完成各种作业任务的机电一体化设备,它不但具有人对环境状态的快速反应和分析判断能力,同时还具有机器长时间工作、精确度高、抗恶劣环境强的能力。它对提高生产效率,改善劳动条件和产品的更新换代起着十分重要的作用3。目前,我国的珍珠岩行业整体水平较差,大多以小企业为主,生产设备比较陈旧,能耗高,生产效率较低,综合起来并不能体现钢丝网架珍珠岩夹芯板的优越性。尤其在钢丝网架生产最后一道工序的焊接作业中采用手工焊接,自动化程度低,影响了企业的长远发展。本文在吸取已有生产设备优点的基础上,为提高钢丝网架焊接作业的自动化程度设计了焊接机械手,使珍珠岩墙体的制备机械达到较高的自动化水平,以大力提高生产效率。通过引用新设备、新技术,可以大大降低产品的人力资源成本,加速珍珠岩材料在建材市场中的应用,从而降低利用宝贵的粘土资源烧制的红砖块的使用,为推动了我国珍珠岩工业的发展,具有重要的现实意义。由以上背景综合起来不难发现,钢丝网架珍珠岩夹芯板墙体材料有巨大的市场潜力,也是应我国发展绿色墙体材料的进程而生。为提高墙体材料生产制造的效率,有必要开展对钢丝网架珍珠岩焊接机械手的研究设计,实现珍珠岩夹芯板焊接作业的自动化。 本文的主要章节如下:第1章:简要介绍了本课题研究的焊接机械手的工作环境。第2章:焊接机械手的总体方案设计:根据作业要求机械结构设计特点,进行本设计机构的选型,并却确定机械手自由度,材料的选用,机械手主杆件尺寸的确定。第3章:完成了机械手传动系统设计与驱动方式的选择。第4章:机械手各部分结构的设计:根据机械手的主要杆件尺寸并利用三维建模SolidWorks软件完成焊接机械手的机械结构装置设计,绘制各个工件的三维图。第5章:选择合适的标准件级专业件,并完成装配工作。绘制主要零件二维工程图。总结与展望:总结本文主要工作,及这次毕业设计的经验,并对后续学习工作进行展望。 1 焊接机械手的工作环境钢丝网架珍珠岩夹芯板是以膨胀珍珠岩为芯材,中间埋设S型钢丝骨架,芯材两面覆以钢丝平网,通过焊接将钢丝网与S型骨架焊成一体,并以水泥砂浆作面层的复合墙板,钢丝网架珍珠岩夹芯板结构如图1-1所示。钢丝网架是由平网和S型钢丝焊接而成,网架厚度约为76mm;内填胶凝压制成型的膨胀珍珠岩芯板,厚度约为5Omm,珍珠岩内固定有S型钢型骨架4。图1-1 钢丝网架珍珠岩夹芯板目前夹芯板的成型工艺一般由机械成网和手工成板两部分组成。机械成网是钢丝网焊接机组(如PMH-25型机组)完成。镀锌钢丝经转盘放线架、纵丝调直机调直、剪网机切割、平网点焊机、卸网架等焊接成100mm100mm的平网格板;弯曲机将调直的镀锌钢丝弯曲成若干S型钢丝,构成轴向网架;平网在两边定位固定,用专用工具为S型钢丝定位;膨胀珍珠岩颗粒与泡花碱、憎水剂等材料按配方比例混合后,定量送人装有S型钢丝的模具中,在压力机下压制成型;成型芯板再经翻转,除去压制外模,叠放后进入烘干窑烘烤。机械成网的加工过程可由可编程控制器控制,工作可靠,操作简单,自动化程度较高。图1-2 钢丝网架的生产工艺流程图 出窑后在焊台上手工成板,用点焊机将S网的凸点分别焊在两边的平网上,脱去芯板内模框后经检验、包装人库,从而制成整体式S型穿丝焊接成钢丝网架芯板。手工成板过程现阶段未实现自动化,要耗费大量的人力和时间,钢丝网架生产工艺流程和焊接生产现场如图1-2和图1-3所示。在此情况下,单一通过手工焊接难以满足焊接质量和焊接效率的要求,使得钢丝网架珍珠岩夹芯板的产量难以有较大的提升,因而迫切需要提高焊接过程的自动化程度。图1-3 钢丝网架焊接的生产现场 2 焊接机械手的总体方案设计 焊接机械手的操作机一般是由机座、手臂、手腕、末端执行器(夹持器和焊枪)及动力装置组成的机械装置,如同人一样,它主要通过旋转副和移动副连接而成,只需6个自由度便可达到空间任意位姿。机械手的结构参数直接影响其工作性能,合理的结构设计可以提高机械手工作的可靠性和效率,具有良好的经济性和有用性。 焊接机械手机械设计的特点是由它的独特结构决定的。一般来说,机械设计需保证所设计的机械装置能在极限负载条件下正常的工作,而焊接机械手的主要工作是实现焊接作业,负载较小且其极限负载的降低可通过降低运动速度来实现。2.1 方案要求 针对现在国内钢丝网架珍珠岩夹芯板的生产过程,其钢丝网架焊接主要作业采用手工作业,生产效率和自动化水平低。由此,本文设计焊接机械手实现其生产工序中钢丝网架焊接部分的自动化。根据现场的工作需要和实体板材的参数,如图1-1所示,其工作要求为: (1) 焊接对象为钢丝平网与S型钢丝相交的凸点,夹芯板的横截面积为2500mm1200mm,板材厚度为100mm,焊点共12排25列,起点A距离板材两边缘各50mm,相邻焊点之相距100mm; (2) 机械手在给定板材工作范围内能连续运动,点焊固定的离散点,运动的时间尽可能短; (3) 机械手的参数设计要根据实体板材的已知尺寸确定,既要满足机械手达到板材的最远点B,又要满足机械手达到距离板材的最近点C; (4) 焊点强度要求:焊点的抗拉力330N,无过烧现象; (5) 焊点质量要求:为保证钢丝网架的承载能力,不允许过多漏焊、脱焊;网架漏焊、脱焊点不应超过总焊点数的8%,且脱焊点不能集中在一起,连续脱焊点不应多于2个;靠近边缘200mm区段内的焊点不允许有脱焊、虚焊现象。图2-1 钢丝网架平面图2.2 机械结构设计特点 机械手的结构设计应根据它的实际应用工种来决定。对于机械手而言,增加杆件的尺寸虽然可以提高机械手的局部刚度和承载能力,但整体的结构变笨重,体积变得过大,质量增加,翻来过来对刚度的要求更高,动态性能可能会因为惯量J的增加而变差,灵活度变弱,精度也随之变低,且各关节电机的驱动功率也会随质量的增加而提高,在电机的选择上更为严格,都增加了机械手的设计成本。 本课题中焊接机械手的主要目的是准确定位到钢丝网架的各个焊点并实现焊接作业。焊接机械手结构设计的主要思路是在满足作业任务要求的前提下,尽量减轻机械结构的体积和质量,减少传动系统的复杂性,实现稳定传动与精确定位,使得焊接机械手的灵活性和稳定性并存。2.3 机构选型 机器人按照结构形式可分为关节型机器人和非关节型机器人。在同样的体积条件下,关节型机器人比非关节型机器人有更多的绝对工作空间和相对空间,同时关节型机器人的动作和轨迹更灵活。关节型机器人各个关节的自由度高,可由移动自由度和转动自由度的不同形式组合而成,它决定了机器人手臂的运动坐标形式和空间运动范围5。焊接机械手完成焊接作业,相对于在其他工业上应用的机械手来说,本文所设计的机械手在根据工作任务所需达到位姿方面相对简单。本文最初设计的两种方案:方案一:采用直线导轨式,即如同机床的导轨的设计方法,直接采用三条导轨,通过三个步进电机来使焊枪和夹持部分一起移动到需要焊接的位置,并完成焊接工作,优缺点:成本低,工作速度快,机器的刚度好,能将其改为生产线工作,操作控制简单,遇到问题易检修,适用于二维平面的焊接任务。(但直线导轨采用丝杆传动,在焊接工作中可能存在焊渣掉去导轨中,从而影响精度。因为精度难以保证,并可能因为精度的原因,使有的点在焊接过程中出现漏焊无法达到最初的目的)。方案二:六自由度的拟人形态焊接机械手,具有多个旋转关节的关节型机器人,可以达到工作空间所需的各个位姿,同时具有良好的可扩展性,良好的能换性,可改装成它用机械手。优点:机器手的适应工作能力更强,能够适应三维空间的焊接任务,工作灵活性更高,同样能安装在生产线上进行工作,方便移动安装工作,最大的优点是只需更换焊接头部分(末端执行器)即可将焊接机械手变为其他工作机械手(如换成电动螺丝刀、钳子,剪刀来实现拆弹和爆破工作,完成极其危险的工作)。综合各类因素,最终根据各自的优缺点设计方案选定为六自由度的焊接机械手。机械手结构方案如图2-2。图2-2机械手的结构方案图机械手末端执行器上装有传感器,控制系统采用半封闭式,根据传感器反馈的位置和系统给定程序进行运动。(本设计对控制部分不作具体研究)2.4 自由度的确定 焊接作业一般是定义在空间直角坐标中的。确定焊枪的位置需要三个独立参数x, y, z;在作业时焊枪的自转用以保证末端执行器与钢丝网保持2个垂直,即:与网架面垂直,与焊机处钢丝垂直。在这种情况下,才能保证达到最好的焊接效果,所以描述焊枪的姿态有三个独立参数6。因此,用机械手实现焊枪的位姿需要至少六个自由度。底座与腰部旋转、肩部、肘关节和手腕部分的上下摆动、旋转、左右摆动共六个自由度实现末端执行器的位姿。 本课题研究的焊接机械手具有六个自由度,腰关节、肩关节、肘关节和腕关节各部分之间的运动通过转动副实现。初步确定焊接机械手的结构方案如图2-2所示。腰部转动关节实现机器人本体除机座固定以外的所有部分的转动;肩关节和肘关节都是转动关节,可以在一定范围内调整大臂、小臂、焊枪与钢丝网间的位姿(位置和姿态);腕关节包括两个关节,分别实现焊枪的俯仰和摆动。2.5 材料的选择机器人手臂所用材料的选择应综合手臂的工作环境和任务要求来考虑,并满足机器人的设计和制作要求。机械手的设计思路是从工作任务出发,最终要求机器人手臂要完成各种运动。因此,在选定对材料时,一个方面的要考虑到材料是作为运动的部件,它应是轻型材料。另一方面,手臂在运动过程相对比较慢,运动中易会产生振动,振动必然大大降低它的运动精度。所以在选择材料时,需要对质量、刚度、阻尼进行综合考量,以便有效地提高手臂的动态性能。此外,机械手的机座是直接固定用的,并不需要运动,在选材时仅需考虑刚度成本即可,机座底板较厚,本文直接采用铸铁铸造而成。机器人手臂做为一种伺服机构,要受到控制,必须考虑它的可控性。在选择手臂材料时,可控性还要和材料的可加工性、结构性、质量等性质一起考虑。也就是机械手手臂的材料时,要综合考虑强度、刚度、重量、弹性、抗震性、外观及价格等多方面因素7。为节省驱动力矩,机械手臂在选择材料时尽量在满足强度条件下选择最轻型材料,查阅各种资料本文终选定为碳素结构钢和合金结构钢等高强度钢。合金结构钢一般分为调质结构钢和表面硬化结构钢,这类材料强度好,尤其是合金结构钢强度增加了45倍、弹性模量E大、抗变形能力强,相对质强比小,是应用最广泛的材料。本文轴类零件选用40Cr,板材选用
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号