资源预览内容
第1页 / 共22页
第2页 / 共22页
第3页 / 共22页
第4页 / 共22页
第5页 / 共22页
第6页 / 共22页
第7页 / 共22页
第8页 / 共22页
第9页 / 共22页
第10页 / 共22页
亲,该文档总共22页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
关于某地区农村水资源利用的问题摘要关键字: 一、 问题重述在我国某些干旱地区,水资源量缺乏时开展农牧业生产的主要限制因素之一。紧密配合国家西部大开发和新农村建设的方针政策,合理利用水资源,加强农田水利工程建设,加速西部农牧业开展,这是政府的一个重要任务。在某地区现有两种类型耕地,第一类耕地各种水利用设施配套,土地平整,排灌便利;第二类耕地那么未具备以上条件。其中第一类耕地有2.5万亩,第二类耕地有8.2万亩,此外尚有宜恳荒地3.5万亩。该地区主要作物是小麦 ,完全靠地表水进行灌溉。由于地表水的供给量随季节波动, 二、模型假设1) 假设题中所给数据真实可靠;2) 假设没有突发事件发生经济危机;3) 假设销量的增长率为常数,且销量函数为连续函数;4) 假设一段时间内消费人群的数量不会有很大变化;5) 忽略随机因素的影响;三、背景知识四、符号说明 表一五、问题分析作数据统计图如下:销售量模型模型模型一一元线性回归一块一元线性模型二一元多项式回归 模型三指数模型四Logistic六、建模与求解模型一:为了研究这些数据之间的规律性,我们以年份t为横坐标,以销售量y为纵坐标,将这些数据点ti,yi 在平面直角坐标系上标出,如图一所示,称这个图为散点图。 图一 由图一我们猜测t与y之间的关系大致可以看做是线性关系,不过这些点又不都在一条直线上,这说明t和y之间的关系不是确定性关系。实际上,销售量y除了与年份t有一定关系外,还受到许多因素的影响。因此,y与t之间可假定有如下结构式:y=其中是两个未知参数,为其他随机因素对y的影响。t是非随机可精确观察的,是均值为零的随机变量,是不可观察的。模型求解 MATLAB 统计工具箱 y= 由数据t,y的值拟合与估计来确定的值。如图二所示: 图二拟合数据,作残差图如下: 图三 残差图分析:由图所知,所得数据在零的附近波动,说明模型整体符合。 参数参数估计值置信区间-4.688564052197585e+05;2.365355494505385e+022.086382515856466e+02,2.644328473154304e+02 表二置信区间作图如下: 图四 在MATLAB中输出结果如图4,在画面中绿色曲线为拟合曲线,它两侧的红线是的置信区间。由置信区间所给数据都在零以上或以下,说明整体符合的比拟好。根据模型一y=对未来销售量的增长趋势进行解读:将的值带入模型一,输入相应t 的值就可以预测未来几年销售量的增长趋势。通过matlab求解得:得出未来五年销量如下表格所示:年份年销售量万台19943134.7819953212.2519963240.0019973290.0019984000.98 表三 模型二: 在模型一的根底上,虽然大局部点都在直线附近,但是为了更精确地反映销量增长趋势我们建立了模型二一元多项式模型t与y的关系是非线性的,如下所示:y= 作二次多项式回归图如下: 图五利用matlab工具求解得: 11.988656342876784,-4.740638475713960e+04,4.686421707818654e+07在MATLAB中输出结果如图五,在画面中绿色曲线为拟合曲线,它两侧的红线是的置信区间。所以模型二为y=11.9947406.38t+4.69*107年份真实值y计算值差值198143.6549.36-5.711982109.86100.259.611983187.21182.364.851984312.67323.69-11.021985496.58501.22-4.641986707.65705.442.211987960.25956.683.5719881238.751301.54-62.7919891560.001621.54-61.5419901824.291982.19-157.919912199.002356.5-157.519922438.892589.93-151.0419932737.712743.57-5.86 表四模型分析:由图五中数据可以看出模型二比模型一更精确,但仍需要改良,我们需要进一步建立模型三模型三 指数增长模型在模型二的根底上建立指数增长模型,记今年的销量为,年后的销量为,年增长率为,那么显然这个公式的根本条件是年增长率保持不变。模型建立 记时刻时的销量为,由于是一个很大的整数。为了利用微积分这一数学工具,将视为连续可微函数。记时刻的人口为。假设销量增长率为常数,即单位时间内的增量等于乘以。考虑到到时间内的增量,显然有 令,得到满足的微分方程: 由这方程很容易解出 参数估计 式的参数可用表1的数据估计。为了利用线性最小二乘法,将取对数,可得 以年的数据拟合式,用MATLAB软件通过表2的程序计算可得所以 即将全部数据拟合式,得结果分析 将上述模型在MATLAB中与实际数据进行拟合后作图得+号是实际数据,曲线是计算结果。可以看出,用这个模型根本上能够描述1990年以前的销量增长,但是从此以后的,销量增长明显变慢,这个模型就不再适合了。(图六模型四Logistic模型 一般来说,当开始的时候,销量基数较小,增长较快,增长率较大;当销量基数到达一定的数量后,增长就慢下来,即增长率减小。而且由于消费人群的数量不会有很大变化,更新换代有事很慢的一件事,所以这些因素都就阻滞销量的增长,所以我们就在模型三的根底上建立模型四,采用Logistic模型,来改良我们的模型。模型建立 阻滞作用主要表达在对销量的增长率的影响上,使得随销量基数的增大而下降。假设将表示为销量的函数,那么它应是减函数。于是方程写作 对的一个简单的假定是,设为的线性函数,即, 这里称为固有增长率,表示销量基数很少时的增长率。为了确定系数的意义,引入所有人类所需要的产品的最大数量,称为产品的最大需求量。当时,产品的销量不再增长,即增长率,代入式为 式的另一种解释是,增长率与产品尚未普及的那局部的人的比例成正比,比例系数为固有增长率。将代入方程得 方程右端的因子表达了销量的增长趋势,因子那么表达了使用人数等因素对销量增长的阻滞作用。显然,越大,前一因子越大,后一因子越小,销量的增长是两个因子共同作用的结果。参数估计 为了利用简单的线性最小二乘法估计这个模型的参数,我们将方程式表示为 记时刻的销量为,那么销量的相对增长率为,表示每年增长的比例。对于题目给出的数据,用数值微分的三点公式计算得结果为下表: 年份 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 65.3377 54.1664 49.4723 39.7610 32.7654 27.6589 24.2079 18.7673 17.5137 13.9745表五有端参数是线性的。我们用1982年至1991年的数据,用MATLAB软件通过,写出如下程序见附录Logistic程序从而求出,,从而,在时最大,可以看出上述结果的一致性结果分析 用上面得到的参数代入式得: 将计算结果与时机数据作比拟用MATLAB作图得如下:图七年份计算销量实际销量1981 1982 1983 1984 1985 1986 1987 1988 1989 1990199119920.0967 0.1500 0.2304 0.3485 0.5158 0.7411 1.0242 1.3507 1.6922 2.0146 2.2908 2.50850.0437 0.1099 0.1872 0.3127 0.4966 0.7076 0.9603 1.2388 1.5600 1.8243 2.1990 2.4389表六从图表中可以看出当在时曲线的斜率最大,即最大,也就是销量的增长率最大,与实际情况也比价吻合。再从图表中的数据可以发现这个模型开始与实际数据有比拟大的差距,但是从1984年以后的数据就都吻合的很好除了个别差一点。模型检验 在估计组织增长模型的参数时没有用到1993年的实际销量数据,是为了用它做模型检验。我们用模型计算1993年的高压锅销量,与的实际数据2737.71作比拟,老检验模型是否适宜。与实际数据的误差约为1.6%,可以认为该模型是相当的满意的。销量预测 将1993年的数据加进去重新估计参数,得,,然后利用此模型去预测1994年的销量,即的值,得到。对Logistic模型进行非线性回归,在MATLAB中输出结果如图4,在画面中绿色曲线为拟合曲线,它两侧的红线是的置信区间。 图八七、模型推广 由于题中只给了年份与销售量的数据,我们只能单一的得出年份与销售量的关系。但根据常识可知影响销售量的因素有很多,例如存在销售旺季和淡季,广告宣传,销售市场的等级,产品的普及度,实用度等等。假设将这些因素一一考虑进去,我们可以利用多元回归的知识建立更精确的销售量增长模型。八、模型评价 模型一过于简单,只能反映局部情况,不够精确全面。在模型一的根底上,我们得到了模型二,但也有缺乏之处,虽然后面的
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号