资源预览内容
第1页 / 共14页
第2页 / 共14页
第3页 / 共14页
第4页 / 共14页
第5页 / 共14页
第6页 / 共14页
第7页 / 共14页
第8页 / 共14页
第9页 / 共14页
第10页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
材料力学重点及公式强度、刚度和稳定性;阿ibi卜轉I aj应力单位面积上的内力。E1 甸=平均应力(1.1)rr AF dFr? = Inn 几二 lim =全应力(1.2)正应力垂直于截面的应力分量,用符号”表示。切应力相切于截面的应力分量,用符号晳表示。应力的量纲:園际单位制:Pa(N/m3). MPa. GPa工程单位制:kgf / m2x kgf / cm.2线应变单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变 形量的大小。外力偶矩传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n与传递的功率P 来计算。当功率P单位为千瓦(kW),转速为n (r/min)时,外力偶矩为=9549-(TT.m)当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为叽= 7024-CN.m)拉(压)杆横截面上的正应力*拉压杆件横截面上只有正应力,且为平均分布,其计算公式为貝(3-1)式中N为该横截面的轴力,A为横截面面积。正负号规定拉应力为正,压应力为负。公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不 均匀;(4)截面连续变化的直杆,杆件两侧棱边的夹角&笛时拉压杆件任意斜截面(a图)上的应力为平均分布,其计算公式为全应力弘“沁(3-2)正应力盍co仏(3-3)1 0 q = si n 2切应力(3-4)式中C为横截面上的应力。正负号规定:由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。兀拉应力为正,压应力为负。专对脱离体内一点产生顺时针力矩的专为正,反之为负。两点结论:(1)当口=。时,即横截面上,达到最大值,即跌=口。当盘出时,即 纵截面上,耳=9=0。(2)当吩亦时,即与杆轴成4于的斜截面上,卩达到最大值,即E1. 2拉(压)杆的应变和胡克定律(1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。 如图3-2。图3-20二铉横向线应变正负号规定伸长为正,缩短为负。(2)胡克定律当应力不超过材料的比例极限时,应力与应变成正比。即 Ee (3-5)或用轴力及杆件的变形量表示为刪(3-6)式中EA称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。公式(3-6)的适用条件:(a) 材料在线弹性范围内工作,即(b) 在计算心时,l长度内其N E、A均应为常量。如杆件上各段不同,则应分段计 算,求其代数和得总变形。即(3-7)(3) 泊松比当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值。即U =E (3-8)表1-1低碳钢拉伸过程的四个阶段阶段图1-5 中线段特征点说明弹性阶段oab比例极限记F为应力与应变成正比的最咼应力弹性极限耳耳为不产生残余变形的最咼应力屈服阶段be屈服极限56为应力变化不大而变形显著增加时的最低 应力强化阶段ce抗拉强度吧円为材料在断裂前所能承受的最大名义应力局部形变阶段ef产生颈缩现象到试件断裂表1-2主要性能指标性能性能指标说明弹性性能弹性模量E口3 时,E-当&强度性能屈服极限5材料出现显著的塑性变形塑性性能总7 xlOO%延伸率材料拉断时的塑性变形程度截面收缩率虫材料的塑性变形程度抗拉强度丢材料的最大承载能力强度计算许用应力材料正常工作容许采用的最高应力,由极限应力除以安全系数求得。込巧塑性材料;脆性材料”=吗其中用称为安全系数,且大于1。强度条件:构件工作时的最大工作应力不得超过材料的许用应力。 对轴向拉伸(压缩)杆件(3 9)按式(1-4 )可进行强度校核、截面设计、确定许克载荷等三类强度计算。2.1切应力互等定理受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小相等,方向 同时垂直指向或者背离两截面交线,且与截面上存在正应力与否无关。2.2纯剪切单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态。2.3切应变切应力作用下,单元体两相互垂直边的直角改变量称为切应变或切应变,用石表示。2.4剪切胡克定律在材料的比例极限范围内,切应力与切应变成正比,即三二(3-10)式中G为材料的切变模量,为材料的又一弹性常数(另两个弹性常数为弹性模量E及泊松 比1,其数值由实验决定。对各向同性材料,E、G有下列关系 2(1 + V)(3-11) 2.5.2切应力计算公式亍空横截面上某一点切应力大小为(3-12)式中戸为该截面对圆心的极惯性矩,尸为欲求的点至圆心的距离。_T_识_圆截面周边上的切应力为(3-13)式中称为扭转截面系数,R为圆截面半径。2.5.3切应力公式讨论(1) 切应力公式(3-12)和式(3-13)适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内。(2) 极惯性矩亠和扭转截面系数碼是截面几何特征量,计算公式见表3-3。在面积不变情况下,材料离散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强。因此,设计空心轴 比实心轴更为合理。表3-3实心圆(外径为d)戚4= f 32=16空心圆(外径为D, 内径为d)32 Eda D| = (1 J2.5.4强度条件圆轴扭转时,全轴中最大切应力不得超过材料允许极限值,否则将发生破坏。因此,强度条7 二话 勻寸件为 人槪(3-14)对等圆截面直杆叽(3-15)式中卩为材料的许用切应力。3.1.1中性层的曲率与弯矩的关系冷(3-16)式中,Q是变形后梁轴线的曲率半径;E是材料的弹性模量;E是横截面对中性轴z轴的惯性矩。M匚r =y3.1.2横截面上各点弯曲正应力计算公式(3-17)式中,M是横截面上的弯矩;的意义同上;y是欲求正应力的点到中性轴的距离最大正应力出现在距中性轴最远点处式中,称为抗弯截面系数。对于为兀鸟的矩形截面,;对于直径为DWE?a =叽二兰的圆形截面,;对于内外径之比为的环形截面,若中性轴是横截面的对称轴,则最大拉应力与最大压应力数值相等,若不是对称轴,则最大 拉应力与最大压应力数值不相等。(3-19)3.2梁的正应力强度条件梁的最大工作应力不得超过材料的容许应力,其表达式为对于由拉、压强度不等的材料制成的上下不对称截面梁(如T字形截面、上下不等边 的工字形截面等),其强度条件应表达为(320a)(320b)式中,印分别是材料的容许拉应力和容许压应力;丹乃分别是最大拉应力点和最 大压应力点距中性轴的距离。3.3梁的切应力嘤(3-21)式中,Q是横截面上的剪力;骂是距中性轴为y的横线与外边界所围面积对中性轴的静矩; 厶是整个横截面对中性轴的惯性矩;b是距中性轴为y处的横截面宽度。3.3.1矩形截面梁切应力方向与剪力平行,大小沿截面宽度不变,沿高度呈抛物线分布。切应力计算公式-7(3-22)加二最大切应力发生在中性轴各点处,3.3.2工字形截面梁切应力主要发生在腹板部分,其合力占总剪力的9597%,因此截面上的剪力主要由腹 板部分来承担。(3-23)切应力沿腹板高度的分布亦为二次曲线。计算公式为7 L. Q .-1最大切应力发生在中性轴上,其大小为(3-25)L ma;近似计算腹板上的最大切应力:d为腹板宽度珥为上下两翼缘内侧距3.3.3圆形截面梁横截面上同一高度各点的切应力汇交于一点,其竖直分量沿截面宽度相等,沿高度呈 抛物线变化。梁的最大工作切应力不得超过材料的许用切应力,圆环形截面上的切应力分布与圆截面类似。3.4切应力强度条件式中,二 是梁上的最大切应力值;是中性轴一侧面积对中性轴的静矩;厶是横 截面对中性轴的惯性矩;b是耳武处截面的宽度。对于等宽度截面,张发生在中性轴上, 对于宽度变化的截面,召武不一定发生在中性轴上。4.2剪切的实用计算名义切应力:假设切应力沿剪切面是均匀分布的,则名义切应力为占(3-27)剪切强度条件:剪切面上的工作切应力不得超过材料的许用切应力L可,即卩川(3-28)5.2挤压的实用计算名义挤压应力 假设挤压应力在名义挤压面上是均匀分布的,则(3-29)式中,4表示有效挤压面积,即挤压面面积在垂直于挤压力作用线平面上的投影。当挤压 面为平面时为接触面面积,当挤压面为曲面时为设计承压接触面面积在挤压力垂直面上的 投影面积。挤压强度条件挤压面上的工作挤压应力不得超过材料的许用挤压应力(3-30)1, 变形计算圆轴扭转时,任意两个横截面绕轴线相对转动而产生相对扭转角。相距为l的两个横 截面的相对扭转角为若等截面圆轴两截面之间的扭矩为常数,则上式化为(rad)(4.5)图4.2式中称为圆轴的抗扭刚度。显然,卩的正负号与扭矩正负号相同。公式(4.4 )的适用条件:(1)材料在线弹性范围内的等截面圆轴,即壬5;(2)在长度l内,T、G、均为常量。当以上参数沿轴线分段变化时,则应分段计算扭转角,然后求代数和得总扭转角。即(rad) (4.6)当T、片沿轴线连续变化时,用式(4.4 )计算卩。2,刚度条件扭转的刚度条件圆轴最大的单位长度扭转角期吨不得超过许可的单位长度扭转角0,即(rad/m) (4.7)式(/陀)(4.8)2, 挠曲线的近似微分方程及其积分在分析纯弯曲梁的正应力时,得到弯矩与曲率的关系P 出对于跨度远大于截面高度的梁,略去剪力对弯曲变形的影响,由上式可得1 _恥)利用平面曲线的曲率公式,并忽略高阶微量,得挠曲线的近似微分方程,即或(4.9)B二昂二 将上式积分一次得转角方程为(4.10)再积分得挠曲线方程=H(4.11)式中,C,D为积分常数,它们可由梁的边界条件确定。当梁分为若干段积分时, 积分常数的确定除需利用边界条件外,还需要利用连续条件。3, 梁的刚度条件限制梁的最大挠度与最大转角不超过规定的许可数值,就得到梁的刚度条件,即 血问隘却创(4.12)3,轴向拉伸或压缩杆件的应变能卩二琢二丄7W 在线弹性范围内,由功能原理得拉=空 卩二空! 当杆件的横截面面积百、轴力为常量时,由胡克定律,可得r(4.14)rrfC = 一 口杆单位体积内的应变能称为应变能密度,用眄表示。线弹性范围内,得(4.15)4, 圆截面直杆扭转应变能眄二莊二丄 在线弹性范围内,由功能原77rr 打=将叽二T与代入上式得(4.16)图4.5根据微体内的应变能在数值上等于微体上的内力功,得应变能的密度咋:(4.
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号