资源预览内容
第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
第4页 / 共5页
第5页 / 共5页
亲,该文档总共5页全部预览完了,如果喜欢就下载吧!
资源描述
人教版高中数学精品资料二项式定理学习目标:1掌握二项式定理和二项式系数的性质。2.能灵活运用展开式、通项公式、二项式系数的性质解题 学习重点:如何灵活运用展开式、通项公式、二项式系数的性质解题学习难点:如何灵活运用展开式、通项公式、二项式系数的性质解题授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 来源:教学过程:一、复习引入:1二项式定理及其特例:(1),(2).2二项展开式的通项公式: 3求常数项、有理项和系数最大的项时,要根据通项公式讨论对的限制;求有理项时要注意到指数及项数的整数性 4二项式系数表(杨辉三角)展开式的二项式系数,当依次取时,二项式系数表,表中每行两端都是,除以外的每一个数都等于它肩上两个数的和5二项式系数的性质:展开式的二项式系数是,可以看成以为自变量的函数,定义域是,例当时,其图象是个孤立的点(如图)(1)对称性与首末两端“等距离”的两个二项式系数相等()直线是图象的对称轴(2)增减性与最大值:当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值(3)各二项式系数和:,来源:令,则 二、讲解范例:例1 设,当时,求的值解:令得:,点评:对于,令即可得各项系数的和的值;令即,可得奇数项系数和与偶数项和的关系例2求证:证(法一)倒序相加:设 又, 来源:由+得:,即(法二):左边各组合数的通项为, 例3已知:的展开式中,各项系数和比它的二项式系数和大(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项解:令,则展开式中各项系数和为,来源:Z|xx|k.Com又展开式中二项式系数和为,来源:(1),展开式共项,二项式系数最大的项为第三、四两项,来源:Z_X_X_K(2)设展开式中第项系数最大,则,来源:,即展开式中第项系数最大,例4已知,求证:当为偶数时,能被整除分析:由二项式定理的逆用化简,再把变形,化为含有因数的多项式 ,为偶数,设(), () ,当=时,显然能被整除,当时,()式能被整除,所以,当为偶数时,能被整除三、课堂练习:1展开式中的系数为 ,各项系数之和为 2多项式()的展开式中,的系数为 3若二项式()的展开式中含有常数项,则的最小值为( )来源: A.4 B.5 C.6 D.84某企业欲实现在今后10年内年产值翻一番的目标,那么该企业年产值的年平均增长率最低应 ( ) A.低于5 B.在56之间 C.在68之间 D.在8以上5在的展开式中,奇数项之和为,偶数项之和为,则等于( )A.0 B. C. D.6求和:来源:7求证:当且时,8求的展开式中系数最大的项 答案:1. 45, 0 2. 0 提示:3. B 4. C 5. D 6. 7. (略) 8. 四、小结 :二项式定理体现了二项式的正整数幂的展开式的指数、项数、二项式系数等方面的内在联系,涉及到二项展开式中的项和系数的综合问题,只需运用通项公式和二项式系数的性质对条件进行逐个节破,对于与组合数有关的和的问题,赋值法是常用且重要的方法,同时注意二项式定理的逆用 五、课后作业:1已知展开式中的各项系数的和等于的展开式的常数项,而 展开式的系数的最大的项等于,求的值答案:2设求: 答案:; 来源:3求值:答案:4设,试求的展开式中:(1)所有项的系数和;(2)所有偶次项的系数和及所有奇次项的系数和答案:(1); (2)所有偶次项的系数和为;所有奇次项的系数和为六、板书设计(略) 七、课后记:
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号